
All experiments have uncertain or random aspects, and
quantifying randomness is what probability is all about. The
mathematical axioms of probability provide rules for ma-
nipulating the numbers, and yet pinning down exactly what
a probability means can be difficult. Attempts at clarification
have resulted in two main schools of statistical inference, fre-
quentist and Bayesian, and years of raging debate.

A role for subjectivity?
For frequentists, a probability is something associated with
the outcome of an observation that is at least in principle re-
peatable, such as the number of nuclei that decay in a certain
time. After many repetitions of a measurement under the
same conditions, the fraction of times one sees a certain
outcome—for example, 5 decays in a minute—tends toward
a fixed value.

The idea of probability as a limiting frequency is perhaps
the most widely used interpretation encountered in a physics
lab, but it is not really what people mean when they say,
“What is the probability that the Higgs boson exists?”
Viewed as a limiting frequency, the answer is either 0% or
100%, though one may not know which. Nevertheless, one
can answer with a subjective probability, a numerical meas-
ure of an individual’s state of knowledge, and in that sense a
value of 50% can be a perfectly reasonable response. The term
“degree of belief” is used in the field to describe that subjec-
tive measure.

Both the frequentist and subjective interpretations pro-
voke some criticism. How can scientists repeat an experiment
an infinite number of times under identical conditions, and
would the empirical frequency be anything that a mathe-
matician would recognize as a mathematical limit? On the
other hand, it surely seems suspect to inject subjective judg-
ments into an experimental investigation. Shouldn’t scien-
tists analyze their results as objectively as possible and with-
out prejudice?

Regardless of interpretation, any probability must obey
an important theorem published by Thomas Bayes in 1763.
Suppose A and B represent two things to which probabilities
are to be assigned. They may be outcomes of a repeatable ob-
servation or perhaps hypotheses to be ascribed a degree of
belief. As long as the probability of B, P(B), is nonzero, the
conditional probability of A given B, P(A|B), may be defined
as P(A|B) = P(A and B)/P(B).

Here P(A and B) means the probability that both A and
B are true. Consider, for example, rolling a die. A could mean
“the outcome is even” and B “the outcome is less than 3.”
Then “A and B” is satisfied only with a roll of two. The im-
posed condition, B, says that the space of possible outcomes
is to be regarded as some subset of those initially specified.

As a special case, B could be the initially specified set; in that
sense all probabilities are conditional.

Now A and B are arbitrary labels; so as long as P(A) is
nonzero, one can reverse the labels A and B in the equation
defining P(A|B) to obtain P(B|A) = P(B and A)/P(A). But the
stipulation “A and B” is exactly the same as “B and A,” so their
probabilities must also be equal. Therefore, one can solve the
respective conditional-probability equations for P(A and B)
and P(B and A), set them equal, and arrive at Bayes’s theorem,

The theorem itself is not a subject of debate, and it finds ap-
plication in both frequentist and Bayesian methods. The con-
troversy stems from how it is applied and, in particular,
whether one extends probability to include degree of belief.

The frequentist school restricts probabilities to outcomes
of repeatable measurements. Its approach to statistical test-
ing is to reject a hypothesis if the observed data fall in a pre-
defined “critical region,” chosen to encompass data that are
uncharacteristic for the hypothesis in question and better ac-
counted for by an alternative explanation. The discussion of
what models are good and bad revolves around how often,
after many repetitions of the measurement, one would reject
a true hypothesis and not reject a false one. For the case of
measuring a parameter—say, the mass of the top quark—a
frequentist would choose the value that maximizes the so-
called likelihood, or probability of obtaining data close to
what is actually seen.

Hypothesis tests and the method of maximum likeli-
hood are among the most widely used tools in the analysis
of experimental data. But notice that frequentists only talk
about probabilities of data, not the probability of a hypothe-
sis or a parameter. The somewhat contorted phrasing that
their methods necessitate seems to avoid the questions one
really wants to ask, namely, “What is the probability that the
parameter is in a given range?” or “What is the probability
that my theory is correct?”

Bayesian learning
The main idea of Bayesian statistics is to use subjective prob-
ability to quantify degree of belief in different models.
Bayes’s theorem can be written as P(θ|x) ∝ P(x|θ)P(θ), where,
instead of A and B, one has a parameter θ to represent the
hypothesis and a data value x to represent the outcome of an
observation. 

The quantity P(x|θ) on the right-hand side is the proba-
bility to obtain x for a given θ. But given empirical data, one
can plug the values into P(x|θ) and consider it to be a func-
tion of θ. In that case, the function is called the likelihood—
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the same quantity as mentioned in connection with frequen-
tist methods. The likelihood multiplies P(θ), called the prior
probability, which reflects the degree of belief before an ex-
perimenter makes measurements. The requirement that
P(θ|x) be normalized to unity when integrated over all values
of θ determines the constant of proportionality 1/P(x).

The left-hand side of the theorem gives the posterior
probability for θ, that is, the probability for θ deduced after
seeing the outcome of the measurement x. Bayes’s theorem
tells experimenters how to learn from their measurements;
the figure presents a couple of graphical examples. But the
learning requires an input: a prior degree of belief about the
hypothesis, P(θ). Bayesian analysis provides no golden rule
for prior probabilities; they might be based on previous
measurements, symmetry arguments, or physical intuition.
But once they are given, Bayes’s theorem specifies uniquely
how those probabilities should change in light of the data.

In many cases of practical interest—for example, a large
data sample and only vague initial judgments—Bayesian and
frequentist methods yield essentially the same numerical re-
sults. Still, the interpretations of those results have subtle but
significant differences. In important cases involving small
data samples, the differences are apparent both philosophi-
cally and numerically.

What you knew and when you knew it
The difficulties in a Bayesian analysis usually stem from the re-
quirement of the prior probabilities. Before measuring a pa-
rameter θ, say, a particle mass, one might be tempted to profess
ignorance and assign a noninformative prior probability, such
as a uniform probability density from 0 to some large mass.

An important problem is that specification of ignorance
for a continuous parameter is not unique. For example, a
model may be parameterized not by θ but instead by λ = ln θ.
A constant probability for one parameter would imply a non-
constant probability for the other. Nevertheless, one often
uses uniform prior probabilities not because they represent
real prior judgments but because they provide a convenient
point of reference.

Difficulties with noninformative priors diminish if one
can write down probabilities that rationally reflect prior
input. The problem is that judgments of what to incorporate

and how to do it can vary widely among individuals, and one
would like experimental results to be relevant to the entire
scientific community, not just to scientists whose prior prob-
abilities coincide with those of the experimenter. So to be of
broader value, a Bayesian analysis needs to show how the
posterior probabilities change under a reasonable variation
of assumed priors.

Scientists should not be required to label themselves as
frequentists or Bayesians. The two approaches answer dif-
ferent but related questions, and a presentation of an exper-
imental result should naturally involve both. Most of the
time, one wants to summarize the results of a measurement
without explicit reference to prior probabilities; in those cases
the frequentist approach will be most visible. It often boils
down to reporting the likelihood function or an appropriate
summary of it, such as the parameter value for which it 
is maximized and the standard deviation of that so-called
maximum-likelihood estimator. 

But if parts of the problem require assignment of prob-
abilities to nonrepeatable phenomena then Bayesian tools
will be used. In general, experiments involve systematic un-
certainties due to various parameters whose values are not
precisely known, but which are assumed not to fluctuate with
repeated measurements. If information is available that con-
strains those parameters, it can be incorporated into prior
probabilities and used in Bayes’s theorem. 

For many, it is natural to take the results of an experi-
ment and fold in both the likelihood of obtaining the specific
data and prior judgments about models or hypotheses. Any-
one who follows that approach is thinking like a Bayesian.
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A Bayesian interprets data through the lens of a prior judgment. The plots illustrate Bayes’s theorem used to make inferences
about a parameter θ in light of a measurement x. Before the measurement, an experimenter’s knowledge about θ is summa-
rized by the prior probability P (θ). The probability of θ given x, called the posterior probability P (θ|x), is proportional to the
product of P (θ) and the likelihood function P (x |θ). In the plot on the left, the prior probability is relatively flat compared to the
likelihood; therefore P (x |θ) and P (θ|x) are rather similar. On the right, the prior probability is more sharply peaked and is
shifted relative to P (x |θ); here P (θ) plays a noticeable role in distinguishing the likelihood from the posterior probability.

The online version of this Quick Study has further resources and
examples.


