Lecture 5 outline

Statistical tests (part II)

1. Testing goodness-of-fit, P-values
2. The significance of an observed signal

3. Pearson’s y? test

General concepts of parameter estimation

1. Samples, estimators, bias

2. Estimators for mean, variance, covariance
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Testing goodness-of-fit

Suppose hypothesis H predicts f(f |H ) for some vector
of data & = (5(,‘1, e ,:Ijn).
We observe a single point in Z-space: Zobs.

What can we say about the validity of H in light of the data?

— Decide what part of Z-space represents less compatibility with

H than does the observed point Zops. (Not unique!)

Z; Z more compatible with H

A
//:— the observed data, fobs

_’
X less com-

patible with F1 < (hyper)surface of equal com-

patibility between £ and H

> T j
Usually construct test statistic t(f) whose value reflects

level compatibility between T and H, e.g.

low t — data more compatible with H:
high ¢ — data less compatible with H .

Since pdf f(f |H ) known, the pdf g(t|H ) can be determined.
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P-values

Express ‘goodness-of-fit’ by giving the P-value (also called

observed significance level or confidence level):

P = probability to observe data & (or t(f)) having equal
or lesser compatibility with H as Zops (or t(fobs))

This is not the ‘probability’ that H is true!

In classical statistics we never talk about P (H )
In Bayesian statistics, treat H as a random variable;

use Bayes’ theorem (here symbolically) to obtain

P(t|H)r(H)
PUW = po1a) 7 () dH

where 7T (H ) is the prior probability for A ; normalize
by integrating (or summing) over all possible hypotheses.
For now stick with classical approach, i.e. our final answer

is the P-value.

N.B. No alternative hypotheses mentioned.

N.B. P-value is a random variable. Previously considered

significance level was a constant, specified before the test.

If H true, then (for continuous &) P is uniform in [0, 1].
If H not true, then pdf of P is (usually) peaked closer to 0.
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An example of a goodness-of-fit test

Probability to observe 1y, heads in /V coin tosses is:

N
nh 1 L N—nh
ol (N — i P (1 —pn)

f(nn; pn, N) =

Hypothesis H': the coin is fair (p, = p; = 0.9)
Take as goodness-of-fit statistic £ = |nh — %|

We toss the coin /N = 20 times and get 17 heads, i.e. tops = 7.

Region of f-space with equal or lesser compatibility:
t>7
P-value = P(ny = 0,1,2,3,17,18,19 or 20) = 0.0026

So does this mean H is false? P-value does not answer this
question; it only gives the probability of obtaining such a level of

discrepancy (or higher) with [ as that observed.

)

P-value = probability of obtaining such a bizarre result ‘by chance’.

A philosophical objection (but not a real problem):

Could have defined experiment to end after at least 3
heads and tails; in ours this happened to occur after 20 tosses.

In such an experiment, the P-value is 0.00072!

Pragmatist’s solution: ‘repetition of experiment’ taken to mean

repetition with same number of trials per experiment.
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The significance of an observed signal

Suppose we observe 1 events; these can consist of:

Ny events from known processes (background)

N events from new processes (signal)

If ny,, ng are Poisson r.v.s with means 1, Vg, = N = Ng + Ny,
is also Poisson, mean vV = g + 1, (cf. SDA Chapter 10):

(Vs + Vb)n e—(l/s—i—l/b)
n!

P (n7 Vs, Vb) —
Suppose 1, = 0.5 and we observe Ngps = 9.
Should we claim evidence for a new discovery?
Hypothesis H: s = 0, i.e. only background present.
P-value = P ('n > nobs)

o0

= > Pnv=0,1)

N=Nghs

Nobs—1 14? .
—1— Yy 2em
n=0 n!

—1.7%x 1074

(# P(vs = 0)))
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Pittalls

A misleading (but often used) representation . ..

estimate for v is Ngps = O,

estimated standard deviation of 1 is v/n = 2.2,

+ ‘measured signal’ = Ngps — Vp = 4.0 £ 2.2

i.e. about 20 from 0

What we want: probability for Poisson variable of mean 14, = 0.5
to give 5 or more. (Answer: 1.7 x 1074

What the picture implies: probability for variable of mean 4.5,
o = 2.2 to give 0 or less. (Answer for Gaussian: 0.021)

— not a problem if ¥ > 1, i.e. . Gaussian
Another pitfall: In practice 14, has a systematic uncertainty.
Suppose e.g. V4, = 0.8,
P(n>5w1=08uv,=0)=14x10"3

= report range of P-values for a reasonable variation of 14,.

(No well established convention.)
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The significance of a peak

Suppose in addition to counting events, we measure X for each.

N(X)

— data

8 [~ expected background 1 <« Histogram of observed and

expected data. Each bin

1s a, Poisson variable.

ar-an

0 5 10 20

X

In the 2 bins with peak, 11 entries found, v, = 3.2,
P(n> 111 =3.2;15=0) =5.0x 107*

But. .. did we know where to look for the peak?
— give P(n > 11) in any 2 adjacent bins.
Is the observed width consistent with the expected & resolution?
— take x window several times expected resolution
How many bins x distributions have we looked at?
— look at a thousand of them, you’ll find a 1073 effect.
Did we adjust the cuts to ‘enhance’ the peak?
— freeze cuts, repeat analysis with new data.

How about the bins to the sides of the peak ... (too low!)

Should we publish???
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Pearson’s X2 test

Test statistic for comparing observed data 77 = (nl, ) N)
to predicted expectation values I/ = (Vl, ce e I/N):
N (n; — v;)’
2 ) 1
X =2
1=1 V;

If n; are independent Poisson r.v.s with means 1/;,
and all ; not too small (rule of thumb: all v; > 9),
then X2 will follow the chi-square pdf for N dof.
The observed X2 then gives a P-value:

oo
P=[> f(2N)dz
where f(z N ) is the chi-square pdf for /N degrees of freedom.

Recall for chi-square pdf, F/[z] = N

)

— often give X2 / N as measure of level of agreement

Better to give X2, N separately ...
x? =15 N = 10 — P-value = 0.13
x? =150, N = 100 — P-value = 9.0 x 1074

N
If niot = 2 My is fixed, n; are binomial, p; = V; / Ntot,
1=1
2
X (ni = pinn)
2 7 110tot
X = X

=1 DiNtot

will follow chi-square for N — 1 dof (all p;nter >> 1).
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Example of X2 test

10

N(X)

— data

- - - expected background

<+ This gives

=X (ni — v3)”
1=1 V;

= 29.8 for N = 20 dof.

But. .. many bins have few (or no) entries,

— here X2 will not follow chi-square pdf.

Pearson’s X2 still usable as a test statistic, but

to compute P-value first get f(X2) from Monte Carlo:

Generate n; from Poisson, mean v, ¢t = 1,..., N

)

compute X2, record in histogram,

repeat experiment many times (here 10°).

0.06

0.04

0.02

—— chi-square pdf for N =20

- - - pdf from Monte Carlo

——> P-value

Using pdf from MC gives
P =0.11

Chi-square pdf would give
P =0.073
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Program for generating Poisson random numbers

program TEST_RNPSSN

Test program for CERNLIB routine RNPSSN (V136) for generating
Poisson distributed numbers.

implicit NONE

¢ Needed for HBOOK routines

integer hsize
parameter (hsize = 100000)
integer hmemor (hsize)

common /pawc/ hmemor

¢ Local variables

character*80 outfile
integer i, icycle, ierror, istat, lun, n
real nu

¢ Initialize HBOOK, open histogram file, book histograms.

call HLIMIT (hsize)

lun = 20

outfile = ’test_rnpssn.his’

call HROPEN (lun, ’histog’, outfile, ’N’, 1024, istat)
call HBOOK1 (1, ’Poisson n’, 100, -0.5, 99.5, 0.)

¢ Generate 10000 values and enter into histogram.

write (*, *) ’enter Poisson mean nu’
read (¥, *) nu
do i =1, 10000
call RNPSSN (nu, n, ierror)
call HF1 (1, FLOAT(n), 1.)
end do

¢ Store histogram and close.

call HROUT (0, icycle, ’ °)
call HREND (’histog’)

stop
END
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Parameter estimation: general concepts

Consider 1 independent observations of an r.v. I,

— sample of size

Equivalently, single observation of an 1-dimensional vector:
T = (331,...,33”)

The x; are independent = joint pdf for the sample is

fsample(f) — f(xl)f(x2) U f(xn)

Task: given a data sample, infer properties of f(a:)

— construct functions of the data to estimate various

properties of f(az) (mean, variance, ... )

Often, form of f(:c) hypothesized, value of parameter(s) unknown

— given form of f(x, 9) and data sample, estimate 6

Statistic = function of the data

Estimator = statistic used to estimate some property of a pdf

notation: estimator for 8 is 6 (hat means estimator)

AN

Estimate = an observed value of an estimator (often: Hobs)

N.B. é(f) is a function of a (vector) random variable,

= it is itself a random variable, characterized by a pdf g(9>

with an expectation value (mean), variance, etc.
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Estimators

How do we construct an estimator € (f)7

There is no golden rule on how

to construct an estimator.

Construct estimators to statisfy (in general conflicting) criteria.

AN

As a start, require consistency: 7}1_}1’130 0 =60

i.e. as size of sample increases, estimate converges to true value:
for any € > 0, Jl_}fIgOP(|9 — 6’| > 6) = 0.

N.B. convergence in the sense of probability, i.e. no guaranty that

any particular O, will be within any given distance of 6.
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Properties of estimators

Consider the pdf of é for a fixed sample size N:

0.6

05

9(8;8,n)

0.3

0.2 r

0.1 r

-2 0 2 4

8
N.B. g(é; 6,n) depends on true (unknown!) parameter 6.

We don’t know 6, just a single value Gps.

Properties of g(é; 6, n):

A

variance V0] = o (04 = ‘statistical error’)

2
5-

bias b = F [é] — 0 (‘systematic error’; depends on 1)
1 1

For many estimators we will have 05 < —=, box —.
VN n
Sometimes consider mean squared error:
MSE = V[4] + b2
In general, there is a trade-off between bias and variance,

— often require minimum variance among estimators with O bias.
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Estimator for the mean (expectation value)

Consider n measurements of r.v. , 1,...,Z,, we want an

estimator for 4 = I [a:] Try arithmetic mean of the &;:

. 1 n
=T = — xT; the sample mean
H n =1

If V[:B] finite, T is a consistent estimator for W, i.e.

1 n
for any € > 0, li_)m P(Z:L‘Z'—,LLZG):O.
oo n i=1

This is the Weak Law of Large Numbers. Compute expectation value:

1 n 1 n
n =1 [x] nzgllu H

1 n
EMZE{ 7,
n =1

— T 1s an unbiased estimator for (& . Compute variance:

1 1

Viz] = E[z% — (E[z])* = E Kn :lxz) (njilajj) )
= ;2”%1 Elzzj] — p’
= Ll = i+ oY) = T

where 02 is the variance of T, and we used

Elz;x;] = p? fori # j and E[z7] = p* + o2,
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Estimator for the variance

Suppose mean [ and variance V[x] — 02 both unknown.

Estimate 02 with the sample variance:

1 n
2 2
o= n—lgl(gjZ 7)

(22 —7%)

n—1
Factor of 1/(n — 1) included so that E[s?] = 0% (i.e. no bias).
Iftu= E[:IZ] is known a priori,

1 n -
5= gz‘zl(xi —p)=a?—p

2

is an unbiased estimator for 02.

Computing the variance of s? (long calculation!) gives

1 n—3
V[s’] = - (u4 - 1#3)

where (i3, is kth central moment (e.g. fy = 02).

The ptf, can be estimated using

1 n ok
n—1 51(% - 7)

mrp —
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Example of estimator for mean

f(x)

0.75

Data sample of n = 100

0.5 values from MC with
_ 2 __
0.25 H = 1’ o” =1
0
0 1 2 3 4 5
. 1l n
M:T:—Z$i21.073
ni1=1

Now repeat the experiment 10* times with 7 = 100 values each,

enter the sample mean for each experiment into histogram:

~
(=3
N
Z

= 0.9981 (j1 unbiased)

400 r A

Sample standard deviation

of [t values = 0.0995

o

(a4
Y

J/n

200 A

N.B. pdf of [t approximately Gaussian (Central Limit Theorem).
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Estimator for covariance and correlation coefficient

To estimate the covariance V;Cy = COV[x, y], use

_ 1 n n

Voy=_— X(@i—2)(yi—y)=_— (zg ~7Y)

which is unbiased.

. N
For the correlation coefficient p = , use
OO0y
S Vay _ S (@i — Z)(yi — 9)
o o 1/2
Sy (E?:1(5Uj —T)? - i (Y — ?)2> /
_ Y —7TY
J(@? —22) (v — 9?)

T has a bias which goes to zero as n — 0Q.

In general, pdf g(T; P, n) is complicated; for Gaussian &, v,

E[T] =p— :0(12;:0 ) 4 O<n—2)

V= (- + O™

(cf. R.J. Muirhead, Aspects of Multivariate Statistical Theory,
Wiley, New York, 1982.)
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Lecture 5 summary

Statistical tests (part II)

1. Testing goodness-of-fit: P-value is the probability to get data
as inconsistent with the hypothesis (or more so) as is the data that
we actually obtained.

2. The significance of an observed signal: A minefield. The
literature is full of 10~% effects that turned out to be fluctuations.

3. Pearson’s x? test: Probably most widely used test statistic.
For small data samples, doesn’t follow chi-square pdf. (Still OK,
get pdf from MC.)

General concepts of parameter estimation

1. Estimators: No golden rule on how to construct an estimator,
pick one according to its properties (consistency, bias, variance).

2. Estimators for mean, variance, covariance: Here not de-
rived from any deeper principle, but their properties turn out to
be (almost) optimal.
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