Lecture 5 outline

Statistical tests (part II)

- 1. Testing goodness-of-fit, P-values
- 2. The significance of an observed signal
- 3. Pearson's χ^2 test

General concepts of parameter estimation

- 1. Samples, estimators, bias
- 2. Estimators for mean, variance, covariance

Testing goodness-of-fit

Suppose hypothesis H predicts $f(\vec{x}|H)$ for some vector of data $\vec{x} = (x_1, \dots, x_n)$.

We observe a single point in \vec{x} -space: \vec{x}_{obs} .

What can we say about the validity of H in light of the data?

 \rightarrow Decide what part of \vec{x} -space represents less compatibility with H than does the observed point $\vec{x}_{\rm obs}$. (Not unique!)

Usually construct test statistic $t(\vec{x})$ whose value reflects level compatibility between \vec{x} and H, e.g.

low $t \to \text{data}$ more compatible with H; high $t \to \text{data}$ less compatible with H.

Since pdf $f(\vec{x}|H)$ known, the pdf g(t|H) can be determined.

P-values

Express 'goodness-of-fit' by giving the P-value (also called observed significance level or confidence level):

 $P = \text{probability to observe data } \vec{x} \text{ (or } t(\vec{x})) \text{ having equal}$ or lesser compatibility with H as \vec{x}_{obs} (or $t(\vec{x}_{\text{obs}})$)

This is not the 'probability' that H is true!

In classical statistics we never talk about P(H). In Bayesian statistics, treat H as a random variable; use Bayes' theorem (here symbolically) to obtain

$$P(H|t) = \frac{P(t|H)\pi(H)}{\int P(t|H)\pi(H) dH}$$

where $\pi(H)$ is the prior probability for H; normalize by integrating (or summing) over all possible hypotheses. For now stick with classical approach, i.e. our final answer is the P-value.

N.B. No alternative hypotheses mentioned.

N.B. P-value is a random variable. Previously considered significance level was a constant, specified before the test.

If H true, then (for continuous \vec{x}) P is uniform in [0, 1]. If H not true, then pdf of P is (usually) peaked closer to 0. Probability to observe $n_{\rm h}$ heads in N coin tosses is:

$$f(n_{
m h};p_{
m h},N) = rac{N!}{n_{
m h}!(N-n_{
m h})!} p_{
m h}^{n_{
m h}} (1-p_{
m h})^{N-n_{
m h}}$$

Hypothesis H: the coin is fair $(p_{\rm h}=p_{\rm t}=0.5)$

Take as goodness-of-fit statistic $t = |n_{\rm h} - \frac{N}{2}|$.

We toss the coin N=20 times and get 17 heads, i.e. $t_{\rm obs}=7$.

Region of t-space with equal or lesser compatibility:

$$t \geq 7$$

$$P$$
-value = $P(n_h = 0, 1, 2, 3, 17, 18, 19 \text{ or } 20) = 0.0026$

So does this mean H is false? P-value does not answer this question; it only gives the probability of obtaining such a level of discrepancy (or higher) with H as that observed.

P-value = probability of obtaining such a bizarre result 'by chance'.

A philosophical objection (but not a real problem):

Could have defined experiment to end after at least 3 heads and tails; in ours this happened to occur after 20 tosses. In such an experiment, the P-value is 0.00072!

Pragmatist's solution: 'repetition of experiment' taken to mean repetition with same number of trials per experiment.

The significance of an observed signal

Suppose we observe n events; these can consist of:

 $n_{\rm b}$ events from known processes (background) $n_{\rm s}$ events from new processes (signal)

If $n_{\rm b}, n_{\rm s}$ are Poisson r.v.s with means $\nu_{\rm b}, \nu_{\rm s}, \Rightarrow n = n_{\rm s} + n_{\rm b}$ is also Poisson, mean $\nu = \nu_{\rm s} + \nu_{\rm b}$ (cf. SDA Chapter 10):

$$P(n; \nu_{\rm s}, \nu_{\rm b}) = \frac{(\nu_{\rm s} + \nu_{\rm b})^n}{n!} e^{-(\nu_{\rm s} + \nu_{\rm b})}$$

Suppose $\nu_b = 0.5$ and we observe $n_{\rm obs} = 5$. Should we claim evidence for a new discovery?

Hypothesis H: $\nu_{\rm s}=0$, i.e. only background present.

$$P\text{-value} = P(n \ge n_{\text{obs}})$$

$$= \sum_{n=n_{\text{obs}}}^{\infty} P(n; \nu_{\text{s}} = 0, \nu_{\text{b}})$$

$$= 1 - \sum_{n=0}^{n_{\text{obs}}-1} \frac{\nu_{\text{b}}^{n}}{n!} e^{-\nu_{\text{b}}}$$

$$= 1.7 \times 10^{-4}$$

$$(\ne P(\nu_{\text{s}} = 0)!)$$

Pitfalls

A misleading (but often used) representation ...

estimate for ν is $n_{\rm obs} = 5$, estimated standard deviation of n is $\sqrt{n} = 2.2$,

What we want: probability for Poisson variable of mean $\nu_b = 0.5$ to give 5 or more. (Answer: 1.7×10^{-4})

What the picture implies: probability for variable of mean 4.5, $\sigma = 2.2$ to give 0 or less. (Answer for Gaussian: 0.021) \rightarrow not a problem if $\nu \gg 1$, i.e. n Gaussian

Another pitfall: In practice ν_b has a systematic uncertainty. Suppose e.g. $\nu_b = 0.8$,

$$P(n \ge 5; \nu_{\rm b} = 0.8, \nu_{\rm s} = 0) = 1.4 \times 10^{-3}$$

 \Rightarrow report range of P-values for a reasonable variation of ν_b . (No well established convention.)

The significance of a peak

Suppose in addition to counting events, we measure x for each.

← Histogram of observed and expected data. Each bin is a Poisson variable.

In the 2 bins with peak, 11 entries found, $\nu_{\rm b}=3.2$,

$$P(n \ge 11; \nu_{\rm b} = 3.2; \nu_{\rm s} = 0) = 5.0 \times 10^{-4}$$

But...did we know where to look for the peak?

$$\rightarrow$$
 give $P(n \ge 11)$ in any 2 adjacent bins.

Is the observed width consistent with the expected x resolution?

 \rightarrow take x window several times expected resolution

How many bins \times distributions have we looked at?

 \rightarrow look at a thousand of them, you'll find a 10^{-3} effect.

Did we adjust the cuts to 'enhance' the peak?

 \rightarrow freeze cuts, repeat analysis with new data.

How about the bins to the sides of the peak ... (too low!)

Should we publish???

Pearson's χ^2 test

Test statistic for comparing observed data $\vec{n} = (n_1, \dots, n_N)$ to predicted expectation values $\vec{\nu} = (\nu_1, \dots, \nu_N)$:

$$\chi^2 = \sum_{i=1}^{N} \frac{(n_i - \nu_i)^2}{\nu_i}$$

If n_i are independent Poisson r.v.s with means ν_i , and all ν_i not too small (rule of thumb: all $\nu_i \geq 5$), then χ^2 will follow the chi-square pdf for N dof. The observed χ^2 then gives a P-value:

$$P = \int_{\chi^2}^{\infty} f(z; N) \, dz$$

where f(z; N) is the chi-square pdf for N degrees of freedom.

Recall for chi-square pdf, E[z] = N,

 \rightarrow often give χ^2/N as measure of level of agreement

Better to give χ^2 , N separately ...

$$\chi^2 = 15, N = 10 \rightarrow P$$
-value = 0.13
 $\chi^2 = 150, N = 100 \rightarrow P$ -value = 9.0×10^{-4}

If $n_{\mathrm{tot}} = \sum_{i=1}^{N} n_i$ is fixed, n_i are binomial, $p_i = \nu_i/n_{\mathrm{tot}}$,

$$\chi^2 = \sum_{i=1}^N rac{(n_i - p_i n_{\mathrm{tot}})^2}{p_i n_{\mathrm{tot}}}$$

will follow chi-square for N-1 dof (all $p_i n_{\text{tot}} >> 1$).

Example of χ^2 test

But...many bins have few (or no) entries, \rightarrow here χ^2 will not follow chi-square pdf.

Pearson's χ^2 still usable as a test statistic, but to compute P-value first get $f(\chi^2)$ from Monte Carlo:

Generate n_i from Poisson, mean ν_i , $i=1,\ldots,N$, compute χ^2 , record in histogram,

repeat experiment many times (here 10^6).

Using pdf from MC gives

$$P = 0.11$$

Chi-square pdf would give

$$P = 0.073$$

```
program TEST_RNPSSN
 Test program for CERNLIB routine RNPSSN (V136) for generating
  Poisson distributed numbers.
      implicit
                      NONE
  Needed for HBOOK routines
      integer
                      hsize
                      (hsize = 100000)
      parameter
                      hmemor (hsize)
      integer
      common /pawc/ hmemor
c Local variables
      character*80
                      outfile
                      i, icycle, ierror, istat, lun, n
      integer
      real
  Initialize HBOOK, open histogram file, book histograms.
      call HLIMIT (hsize)
      lun = 20
      outfile = 'test_rnpssn.his'
      call HROPEN (lun, 'histog', outfile, 'N', 1024, istat)
      call HBOOK1 (1, 'Poisson n', 100, -0.5, 99.5, 0.)
c Generate 10000 values and enter into histogram.
      write (*, *) 'enter Poisson mean nu'
      read (*, *) nu
      do i = 1, 10000
        call RNPSSN (nu, n, ierror)
        call HF1 (1, FLOAT(n), 1.)
      end do
  Store histogram and close.
      call HROUT (0, icycle, '')
      call HREND ('histog')
      stop
      END
```

Parameter estimation: general concepts

Consider n independent observations of an r.v. x,

$$\rightarrow$$
 sample of size n

Equivalently, single observation of an n-dimensional vector:

$$\vec{x} = (x_1, \dots, x_n)$$

The x_i are independent \Rightarrow joint pdf for the sample is

$$f_{\text{sample}}(\vec{x}) = f(x_1)f(x_2)\cdots f(x_n)$$

Task: given a data sample, infer properties of f(x).

 \rightarrow construct functions of the data to estimate various properties of f(x) (mean, variance, ...)

Often, form of f(x) hypothesized, value of parameter(s) unknown

 \rightarrow given form of $f(x;\theta)$ and data sample, estimate θ

Statistic = function of the data

Estimator = statistic used to estimate some property of a pdf notation: estimator for θ is $\hat{\theta}$ (hat means estimator)

Estimate = an observed value of an estimator (often: $\hat{\theta}_{obs}$)

N.B. $\hat{\theta}(\vec{x})$ is a function of a (vector) random variable,

 \Rightarrow it is itself a random variable, characterized by a pdf $g(\hat{\theta})$ with an expectation value (mean), variance, etc.

Estimators

How do we construct an estimator $\hat{\theta}(\vec{x})$?

There is no golden rule on how to construct an estimator.

Construct estimators to statisfy (in general conflicting) criteria.

As a start, require consistency: $\lim_{n\to\infty} \hat{\theta} = \theta$

i.e. as size of sample increases, estimate converges to true value:

for any
$$\epsilon > 0$$
, $\lim_{n \to \infty} P(|\hat{\theta} - \theta| > \epsilon) = 0$.

N.B. convergence in the sense of probability, i.e. no guaranty that any particular $\hat{\theta}_{obs}$ will be within any given distance of θ .

Properties of estimators

Consider the pdf of $\hat{\theta}$ for a fixed sample size n:

N.B. $g(\hat{\theta}; \theta, n)$ depends on true (unknown!) parameter θ .

We don't know θ , just a single value $\hat{\theta}_{obs}$.

Properties of $g(\hat{\theta}; \theta, n)$:

variance
$$V[\hat{ heta}] = \sigma_{\hat{ heta}}^2$$
. $(\sigma_{\hat{ heta}} = \text{`statistical error'})$

bias
$$b = E[\hat{\theta}] - \theta$$
 ('systematic error', depends on n)

For many estimators we will have $\sigma_{\hat{\theta}} \propto \frac{1}{\sqrt{n}}, \quad b \propto \frac{1}{n}$.

Sometimes consider mean squared error:

$$MSE = V[\hat{\theta}] + b^2$$

In general, there is a trade-off between bias and variance,

 \rightarrow often require minimum variance among estimators with 0 bias.

Estimator for the mean (expectation value)

Consider n measurements of r.v. x, x_1, \ldots, x_n , we want an estimator for $\mu = E[x]$. Try arithmetic mean of the x_i :

$$\hat{\mu} = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 (the sample mean)

If V[x] finite, \overline{x} is a consistent estimator for μ , i.e.

for any
$$\epsilon > 0$$
, $\lim_{n \to \infty} P\left(\left|\frac{1}{n}\sum_{i=1}^{n} x_i - \mu\right| \ge \epsilon\right) = 0$.

This is the Weak Law of Large Numbers. Compute expectation value:

$$E[\overline{x}] = E\left[\frac{1}{n} \sum_{i=1}^{n} x_i\right] = \frac{1}{n} \sum_{i=1}^{n} E[x_i] = \frac{1}{n} \sum_{i=1}^{n} \mu = \mu$$

 $ightarrow \overline{x}$ is an unbiased estimator for μ . Compute variance:

$$V[\overline{x}] = E[\overline{x}^{2}] - (E[\overline{x}])^{2} = E\left[\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)\left(\frac{1}{n}\sum_{j=1}^{n}x_{j}\right)\right] - \mu^{2}$$

$$= \frac{1}{n^{2}}\sum_{i,j=1}^{n}E[x_{i}x_{j}] - \mu^{2}$$

$$= \frac{1}{n^{2}}\left[(n^{2} - n)\mu^{2} + n(\mu^{2} + \sigma^{2})\right] - \mu^{2} = \frac{\sigma^{2}}{n}$$

where σ^2 is the variance of x, and we used

$$E[x_ix_j] = \mu^2$$
 for $i \neq j$ and $E[x_i^2] = \mu^2 + \sigma^2$.

Estimator for the variance

Suppose mean μ and variance $V[x] = \sigma^2$ both unknown.

Estimate σ^2 with the sample variance:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{n}{n-1} (\overline{x^{2}} - \overline{x}^{2})$$

Factor of 1/(n-1) included so that $E[s^2] = \sigma^2$ (i.e. no bias).

If $\mu = E[x]$ is known a priori,

$$S^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 = \overline{x^2} - \mu^2$$

is an unbiased estimator for σ^2 .

Computing the variance of s^2 (long calculation!) gives

$$V[s^{2}] = \frac{1}{n} \left(\mu_{4} - \frac{n-3}{n-1} \mu_{2}^{2} \right)$$

where μ_k is kth central moment (e.g. $\mu_2 = \sigma^2$).

The μ_k can be estimated using

$$m_k = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^k$$

Example of estimator for mean

Data sample of n=100 values from MC with $\mu=1,~\sigma^2=1.$

$$\hat{\mu} = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 1.073$$

Now repeat the experiment 10^4 times with n=100 values each, enter the sample mean for each experiment into histogram:

N.B. pdf of $\hat{\mu}$ approximately Gaussian (Central Limit Theorem).

To estimate the covariance $V_{xy} = \text{cov}[x, y]$, use

$$\widehat{V}_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \frac{n}{n-1} (\overline{xy} - \overline{x}\overline{y})$$

which is unbiased.

For the correlation coefficient $\rho = \frac{V_{xy}}{\sigma_x \sigma_y}$, use

$$r = \frac{\widehat{V}_{xy}}{s_x s_y} = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\left(\sum_{j=1}^n (x_j - \overline{x})^2 \cdot \sum_{k=1}^n (y_k - \overline{y})^2\right)^{1/2}}$$

$$=rac{\overline{x}\overline{y}-\overline{x}\,\overline{y}}{\sqrt{(\overline{x^2}-\overline{x}^2)\,(\overline{y^2}-\overline{y}^2)}}$$
 .

r has a bias which goes to zero as $n \to \infty$.

In general, pdf $g(r; \rho, n)$ is complicated; for Gaussian x, y,

$$E[r] = \rho - \frac{\rho(1 - \rho^2)}{2n} + O(n^{-2})$$

$$V[r] = \frac{1}{n} (1 - \rho^2)^2 + O(n^{-2})$$

(cf. R.J. Muirhead, Aspects of Multivariate Statistical Theory, Wiley, New York, 1982.)

Statistical tests (part II)

- 1. **Testing goodness-of-fit:** *P*-value is the probability to get data as inconsistent with the hypothesis (or more so) as is the data that we actually obtained.
- 2. The significance of an observed signal: A minefield. The literature is full of 10^{-4} effects that turned out to be fluctuations.
- 3. **Pearson's** χ^2 **test:** Probably most widely used test statistic. For small data samples, doesn't follow chi-square pdf. (Still OK, get pdf from MC.)

General concepts of parameter estimation

- 1. **Estimators:** No golden rule on how to construct an estimator, pick one according to its properties (consistency, bias, variance).
- 2. Estimators for mean, variance, covariance: Here not derived from any deeper principle, but their properties turn out to be (almost) optimal.