Statistical Data Analysis
Discussion notes — week 5

e Problem sheet 2

e Some comments on Machine Learning
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Problem sheet 2

oops, this was not on your PS1

/

Exercise 1 [10 marks|: Consider (as in Problem Sheet 1) the joint pdf for the continuous

random variables z and y
—=  *+y* < R?,
fz,y) =
0 otherwise.

Define the new variables

u = \/$2+y27

v = tan"l(y/z).

That is, u corresponds to the radius and v to the azimuthal angle in plane polar coordinates,
with v > 0 and 0 < v < 27.
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(a) [5] Find the joint pdf of u and v. (Use the inverse of the transformation z = ucosw,

1(3) y = usinwv.) Are u and v independent? Justify your answer.
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1(b)
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(b) [5] Find the marginal pdfs for v and v.
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Exercise 2 [5 marks|: Consider n random variables & = (z1,...,%,) that follow a joint pdf
f(Z) and constants co, c1, - .., Cn.

(a) [1 mark] Starting from the definition of the expectation value for continuous random
variables, show that
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(b) [4 marks] Using the result from (a), show that the variance is

i n
Vv [co + Zcza:z] = Z cicjcov(zi, ;] .
i=1

1,7=1

For the variance above, find what this reduces to in the case where the variables z1,...,z, are
uncorrelated.
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2(b) (cont.)
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Exercise 3 [5 marks]: Consider two random variables z and y and a constant . From the
previous exercise we have (no need to rederive)

Viaz +y] = o*Viz] + V]y] + 2acov(z, y] = a’c; + o, + 2ap0,0y
where o2 = V(z], 0; = V[y], and the correlation coefficient is p = cov[z,y]/0,0,. Using this
result, show that the correlation coefficient always lies in the range —1 < p < 1. (Use the

fact that the variance V]ax + y] is always greater than or equal to zero and consider the cases
a=*+o,/0;.)
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A simple example (2D)

Consider two variables, x; and x,, and suppose we have formulas
for the joint pdfs for both signal (s) and background (b) events (in
real problems the formulas are usually not available).

f(x,|x,) ~ Gaussian, different means for s/b,
Gaussians have same g, which depends on x,,
f(x,) ~ exponential, same for both s and b,

Jx1, x0) = f(xqxy) f(x,):

1 2 /0.2 1
— _{II_P'-'S} _fﬂﬂ’ (‘TE) - —:Bgf‘:!t
T1,Tals) = e o
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f(z1,229|b) = (x1—pp)?/20%(22) ~ ,—x2/A
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o(z2) = ope 2/¢
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Joint and marginal distributions of x,, x,
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Distribution f(x,) same for s, b.
> So does x, help discriminate
el between the two event types?
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Likelihood ratio for 2D example

Neyman-Pearson lemma says best critical region is determined
by the likelihood ratio:

f(x1, T2ls)
f($1,$2|b)

t(ﬂ?l,iﬂg) —

Equivalently we can use any monotonic function of this as
a test statistic, e.g.,

5 — ) + (s — pn) T
o HEE_Q-TE{'IE

Int

Boundary of optimal critical region will be curve of constant In ¢,
and this depends on x,!
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Contours of constant MVA output

Exact likelihood ratio Fisher discriminant
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Contours of constant MVA output

Multilayer Perceptron | Boosted Decision Tree
1 hidden layer with 2 nodes 200 iterations (AdaBoost)

Training samples: 10° signal and 10° background events
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ROC curve

ROC = “receiver operating
characteristic” (term from
signal processing).

Shows (usually) background
rejection (1—¢,) versus

LR signal efficiency &..

-------- Fisher
_____ MLP . :

' Higher curve is better;
—— BDT -a, .

{  usually analysis focused on
02 04 06 08 1 asmall part of the curve.
€
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2D Example: discussion

Even though the distribution of x, is same for signal and
background, x; and x, are not independent, so using x, as an
input variable helps.

Here we can understand why: high values of x, correspond to a
smaller o for the Gaussian of x,. So high x, means that the value
of x; was well measured.

If we don’t consider x,, then all of the x; measurements are
lumped together. Those with large o (low x,) “pollute” the well
measured events with low o (high x,).

Often in HEP there may be variables that are characteristic of
how well measured an event is (region of detector, number of
pile-up vertices,...). Including these variables in a multivariate
analysis preserves the information carried by the well-measured
events, leading to improved performance.
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K. Cranmer, U. Seljak and K. Terao, Machine Learning, in R.L. Workman et al. (PDG), Prog. Theor. Exp.
Phys. 2022, 083C01 (2022); https://pdg.lbl.gov/

Convolutional Neural Networks

Designed for image data (pixels) — number of input variables =106.

Intermediate layers include “convolutions” of an area in previous
layer, i.e., transformed pixel is a linear combination of pixels in local
neighborhood in previous layer

— far fewer connections than a fully connected MLP.

_\
Nehhhe

CNNs widely used for image classification.
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K. Cranmer, U. Seljak and K. Terao, Machine Learning, in R.L. Workman et al. (PDG), Prog. Theor. Exp.
Phys. 2022, 083C01 (2022); https://pdg.Ibl.gov/

Recurrent Neural Networks

Designed for sequential data (time series).

Y Y YVia Vi Vi Yn
h % ho— h1 /11-1:I ht Ihm‘ i}_h“
X X t-1 X, X X

Figure 41.6: Pictorial description of a RNN (on the left) which takes an input and produces
an output at every step with a hidden-to-hidden connection. The right diagram is unrolled over
discrete steps. The yellow box represents a cell: a set of operations unique to each architecture.

RNNs used, e.g., in natural language processing.
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Jonathan Shlomi, Peter Battaglia, Jean-Roch Vlimant, Graph Neural Networks in Particle Physics,
2021 Mach. Learn.: Sci. Technol. 2 021001, 2021; https://arxiv.org/abs/2007.13681.

Graph Neural Networks

GNNs work with graph-structured input data, e.g., signals
from particles in tracking detector:

Graph = set of nodes

plus set of edges: o @' f .
o
e e ../,q- ‘\,\

Sgpec S
‘.
)&
Part of a larger field called “geometric deep learning”:

CNN is a type of GNN, graph relates pixel to its neighbors.

Transformer is a GNN that uses a mechanism called “attention”,
used in natural language processing (T of ChatGPT).
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Transformers

Elements of feature vector are tokens, represent
each token by a vector in a high-dimensional
vector space (“embedding”).

By looking at surrounding tokens, define a
measure of how each token relates to the others
(“attention”), using randomly initialised adjustable

parameters.

For sequential data such as text, include

“positional encoding” (add small offsets to the

embedding vectors).

Adjust the components of the vectors with an

MLP.

Repeat attention+MLP with multiple layers.

Vaswani et al. (2017),
“Attention Is All You Need”

Qutput
Probabilities

Positional
Encoding

Adjust all the parameters (attention and MLP) to
minimise a loss function that uses the (labeled)

training data.
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