# Statistical Data Analysis Discussion notes – week 5

- Problem sheet 2
- Some comments on Machine Learning

#### Problem sheet 2

## oops, this was not on your PS1

**Exercise 1** [10 marks]: Consider (as in Problem Sheet 1) the joint pdf for the continuous random variables x and y

$$f(x,y) = \begin{cases} \frac{1}{\pi R^2} & x^2 + y^2 \le R^2, \\ 0 & \text{otherwise.} \end{cases}$$

Define the new variables

$$u = \sqrt{x^2 + y^2},$$

$$v = \tan^{-1}(y/x).$$

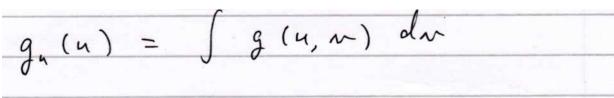
That is, u corresponds to the radius and v to the azimuthal angle in plane polar coordinates, with  $u \ge 0$  and  $0 \le v < 2\pi$ .

1(a) (a) [5] Find the joint pdf of u and v. (Use the inverse of the transformation  $x = u \cos v$ ,  $y = u \sin v$ .) Are u and v independent? Justify your answer.

| T-      | d X<br>D u | 3x      | COS N                            | -usinv   |      |
|---------|------------|---------|----------------------------------|----------|------|
|         | ) y<br>) u | 3n =    | cos N<br>sin N                   | y cosat  |      |
|         |            |         | $\sin^2 N = u$ $(\chi(u, v), y($ |          |      |
|         |            |         | , o < u                          |          |      |
| g ( u v | ) is       | indepen | ndent of a                       | <i>y</i> | Ser. |
| Jer,    |            |         |                                  |          |      |

1(b)

(b) [5] Find the marginal pdfs for u and v.



$$= \int \frac{u}{\pi R^2} d\nu$$

$$=\frac{2u}{R^2}, \quad 0 \leq u \leq R$$

$$g_{m}(N) = \int g(u, N) du$$

$$=\int_{0}^{R}\frac{u}{\pi R^{2}}du$$

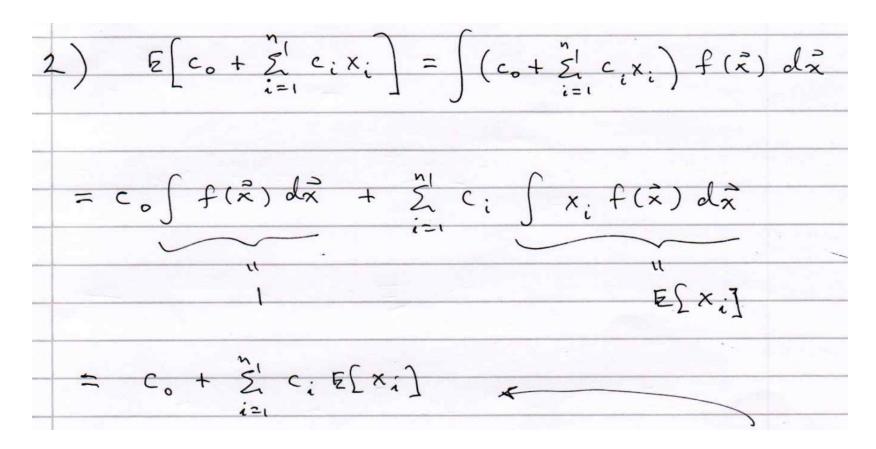
$$=\frac{1}{\sqrt{R^2}}\frac{u}{2}$$

$$=\frac{1}{2T}$$
,  $0 \leq N \leq 2T$ 

**Exercise 2 [5 marks]:** Consider n random variables  $\vec{x} = (x_1, \ldots, x_n)$  that follow a joint pdf  $f(\vec{x})$  and constants  $c_0, c_1, \ldots, c_n$ .

(a) [1 mark] Starting from the definition of the expectation value for continuous random variables, show that

$$E\left[c_0 + \sum_{i=1}^n c_i x_i\right] = c_0 + \sum_{i=1}^n c_i E[x_i].$$



(b) [4 marks] Using the result from (a), show that the variance is

$$V\left[c_0 + \sum_{i=1}^n c_i x_i\right] = \sum_{i,j=1}^n c_i c_j \operatorname{cov}[x_i, x_j].$$

For the variance above, find what this reduces to in the case where the variables  $x_1, \ldots, x_n$  are uncorrelated.

$$V\left[c_{o} + \sum_{i=1}^{N} c_{i} x_{i}\right] = E\left[\left(c_{o} + \sum_{i=1}^{N} c_{i} x_{i}\right)^{2}\right] - \left(E\left[c_{o} + \sum_{i=1}^{N} c_{i} x_{i}\right]\right)$$

$$= E\left[\left(c_{o} + \sum_{i=1}^{N} c_{i} x_{i}\right)\left(c_{o} + \sum_{i=1}^{N} c_{i} x_{i}\right)\right]$$

$$- \left(c_{o} + \sum_{i=1}^{N} c_{i} E\left[x_{i}\right]\right)\left(c_{o} + \sum_{i=1}^{N} c_{i} E\left[x_{i}\right]\right)$$

#### 2(b) (cont.)

2 cont.) the x; are uncorrelated cov[x;,x;] = 8., 5. co + 2 cixi = 2 = cic; cov[x;x;] El cici disoi

**Exercise 3 [5 marks]:** Consider two random variables x and y and a constant  $\alpha$ . From the previous exercise we have (no need to rederive)

$$V[\alpha x + y] = \alpha^2 V[x] + V[y] + 2\alpha \text{cov}[x, y] = \alpha^2 \sigma_x^2 + \sigma_y^2 + 2\alpha \rho \sigma_x \sigma_y ,$$

where  $\sigma_x^2 = V[x]$ ,  $\sigma_y^2 = V[y]$ , and the correlation coefficient is  $\rho = \cos(x, y)/\sigma_x\sigma_y$ . Using this result, show that the correlation coefficient always lies in the range  $-1 \le \rho \le 1$ . (Use the fact that the variance  $V[\alpha x + y]$  is always greater than or equal to zero and consider the cases

 $\alpha = \pm \sigma_y/\sigma_x$ .)

3) We are given

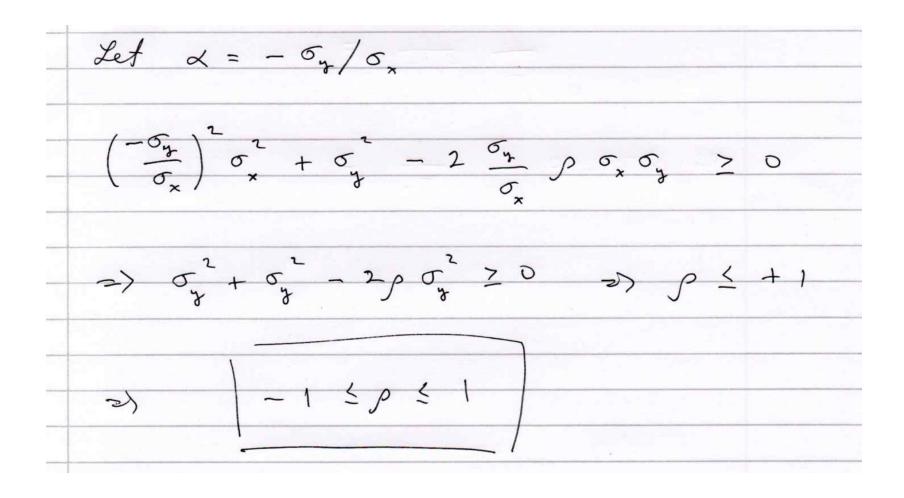
$$V[\alpha \times +y] = \alpha^{2}\sigma_{x}^{2} + \sigma_{y}^{2} + 2\alpha\sigma_{y}\rho \geq 0$$

$$Zet \quad \alpha = \frac{\sigma_{x}}{\sigma_{x}}$$

$$\Rightarrow \frac{\sigma_{y}^{2}}{\sigma_{x}^{2}} = \frac{\sigma_{x}^{2}}{\sigma_{x}^{2}} + \frac{\sigma_{y}^{2}}{\sigma_{x}^{2}} + \frac{\sigma_{y}^{2}}{\sigma_{x}^{2}} \geq 0$$

$$\Rightarrow \frac{\sigma_{y}^{2}}{\sigma_{x}^{2}} + \frac{\sigma_{y}^{2}}{\sigma_{x}^{2}} + \frac{\sigma_{y}^{2}}{\sigma_{x}^{2}} \geq 0 \Rightarrow \rho \geq -1$$

#### 3 (cont.)



### A simple example (2D)

Consider two variables,  $x_1$  and  $x_2$ , and suppose we have formulas for the joint pdfs for both signal (s) and background (b) events (in real problems the formulas are usually not available).

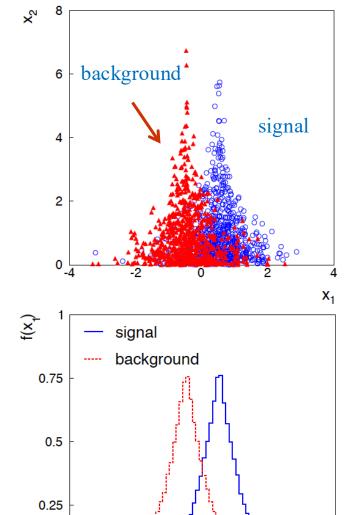
 $f(x_1|x_2) \sim$  Gaussian, different means for s/b, Gaussians have same  $\sigma$ , which depends on  $x_2$ ,  $f(x_2) \sim$  exponential, same for both s and b,  $f(x_1, x_2) = f(x_1|x_2) f(x_2)$ :

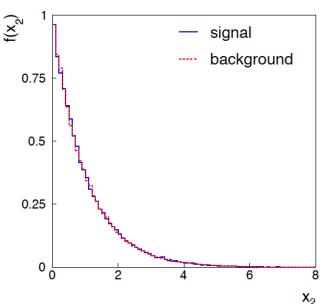
$$f(x_1, x_2|\mathbf{s}) = \frac{1}{\sqrt{2\pi}\sigma(x_2)} e^{-(x_1 - \mu_{\mathbf{s}})^2/2\sigma^2(x_2)} \frac{1}{\lambda} e^{-x_2/\lambda}$$

$$f(x_1, x_2|\mathbf{b}) = \frac{1}{\sqrt{2\pi}\sigma(x_2)} e^{-(x_1 - \mu_{\mathbf{b}})^2/2\sigma^2(x_2)} \frac{1}{\lambda} e^{-x_2/\lambda}$$

$$\sigma(x_2) = \sigma_0 e^{-x_2/\xi}$$

### Joint and marginal distributions of $x_1, x_2$





Distribution  $f(x_2)$  same for s, b.

So does  $x_2$  help discriminate between the two event types?

0\_4

 $X_1$ 

### Likelihood ratio for 2D example

Neyman-Pearson lemma says best critical region is determined by the likelihood ratio:

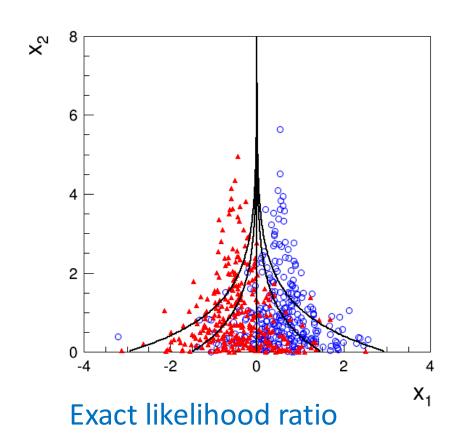
$$t(x_1, x_2) = \frac{f(x_1, x_2|\mathbf{s})}{f(x_1, x_2|\mathbf{b})}$$

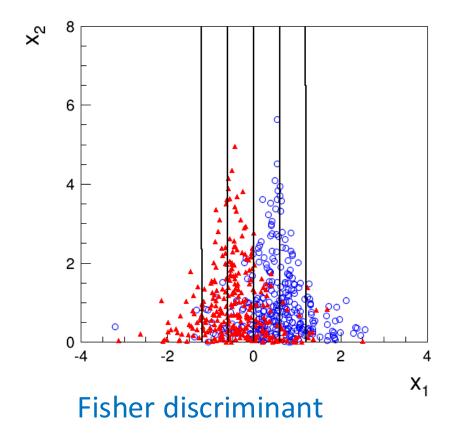
Equivalently we can use any monotonic function of this as a test statistic, e.g.,

$$\ln t = \frac{\frac{1}{2}(\mu_{\rm b}^2 - \mu_{\rm s}^2) + (\mu_{\rm s} - \mu_{\rm b})x_1}{\sigma_0^2 e^{-2x_2/\xi}}$$

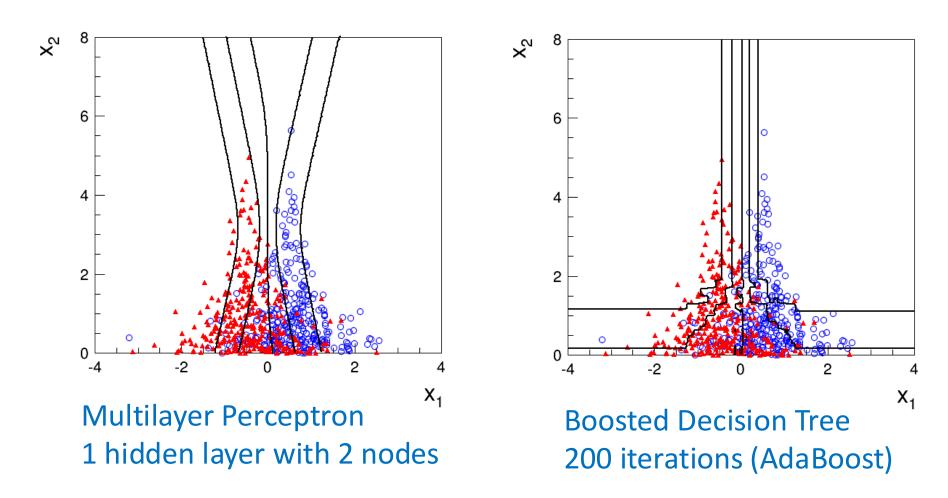
Boundary of optimal critical region will be curve of constant  $\ln t$ , and this depends on  $x_2$ !

### Contours of constant MVA output



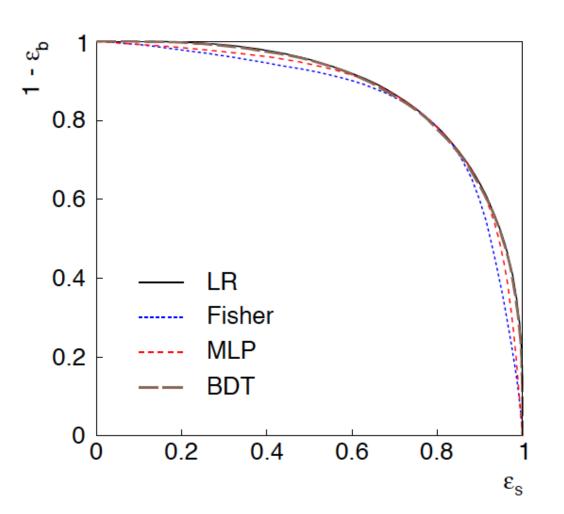


### Contours of constant MVA output



Training samples: 10<sup>5</sup> signal and 10<sup>5</sup> background events

#### **ROC** curve



ROC = "receiver operating characteristic" (term from signal processing).

Shows (usually) background rejection  $(1-\varepsilon_b)$  versus signal efficiency  $\varepsilon_s$ .

Higher curve is better; usually analysis focused on a small part of the curve.

### 2D Example: discussion

Even though the distribution of  $x_2$  is same for signal and background,  $x_1$  and  $x_2$  are not independent, so using  $x_2$  as an input variable helps.

Here we can understand why: high values of  $x_2$  correspond to a smaller  $\sigma$  for the Gaussian of  $x_1$ . So high  $x_2$  means that the value of  $x_1$  was well measured.

If we don't consider  $x_2$ , then all of the  $x_1$  measurements are lumped together. Those with large  $\sigma$  (low  $x_2$ ) "pollute" the well measured events with low  $\sigma$  (high  $x_2$ ).

Often in HEP there may be variables that are characteristic of how well measured an event is (region of detector, number of pile-up vertices,...). Including these variables in a multivariate analysis preserves the information carried by the well-measured events, leading to improved performance.

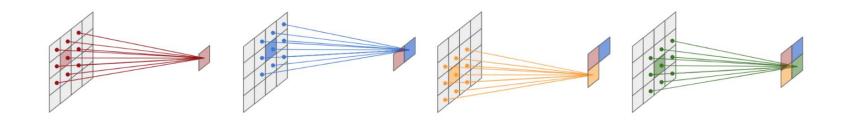
K. Cranmer, U. Seljak and K. Terao, *Machine Learning*, in R.L. Workman et al. (PDG), Prog. Theor. Exp. Phys. 2022, 083C01 (2022); https://pdg.lbl.gov/

#### Convolutional Neural Networks

Designed for image data (pixels)  $\rightarrow$  number of input variables  $\gtrsim 10^6$ .

Intermediate layers include "convolutions" of an area in previous layer, i.e., transformed pixel is a linear combination of pixels in local neighborhood in previous layer

→ far fewer connections than a fully connected MLP.

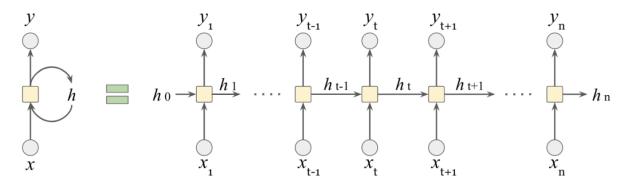


CNNs widely used for image classification.

K. Cranmer, U. Seljak and K. Terao, *Machine Learning*, in R.L. Workman et al. (PDG), Prog. Theor. Exp. Phys. 2022, 083C01 (2022); https://pdg.lbl.gov/

#### **Recurrent Neural Networks**

Designed for sequential data (time series).



**Figure 41.6:** Pictorial description of a RNN (on the left) which takes an input and produces an output at every step with a hidden-to-hidden connection. The right diagram is unrolled over discrete steps. The yellow box represents a cell: a set of operations unique to each architecture.

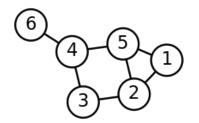
RNNs used, e.g., in natural language processing.

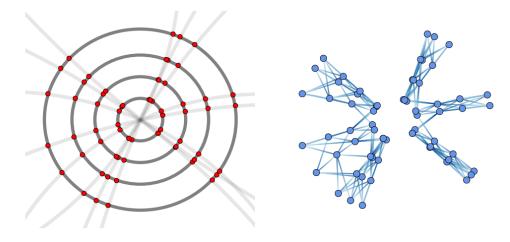
Jonathan Shlomi, Peter Battaglia, Jean-Roch Vlimant, *Graph Neural Networks in Particle Physics*, 2021 *Mach. Learn.: Sci. Technol.* **2** 021001, 2021; https://arxiv.org/abs/2007.13681.

### **Graph Neural Networks**

GNNs work with graph-structured input data, e.g., signals from particles in tracking detector:

Graph = set of nodes plus set of edges:





Part of a larger field called "geometric deep learning":

CNN is a type of GNN, graph relates pixel to its neighbors.

Transformer is a GNN that uses a mechanism called "attention", used in natural language processing (T of ChatGPT).

#### **Transformers**

Elements of feature vector are tokens, represent each token by a vector in a high-dimensional vector space ("embedding").

By looking at surrounding tokens, define a measure of how each token relates to the others ("attention"), using randomly initialised adjustable parameters.

For sequential data such as text, include "positional encoding" (add small offsets to the embedding vectors).

Adjust the components of the vectors with an MLP.

Repeat attention+MLP with multiple layers.

Adjust all the parameters (attention and MLP) to minimise a loss function that uses the (labeled) training data.

Vaswani et al. (2017), "Attention Is All You Need"

