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Statistical Data Analysis
Lecture 1-1

e Course structure and policies
e Qutline of topics

e Some resources
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Course Info (1)

This year’s lectures:
Mondays 2-5 pm starting 29 Sep., no reading week.

First two hours are the primary lectures, 3 hour is discussion
session (additional examples, discussion of problem sheets,
computing tools, etc.).

Venue: Stewart House 2, 32 Russell Sg, London WC1B 5DN
There will be 9 problem sheets.

Some paper & pencil, some computing problems.
Due weekly Mondays 4 pm starting lecture week 3 through 11.

Late submissions according to College policy (10% off for 24h,
then no credit unless agreed ).
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Course Info (2)
For problem sheets, scan/merge into a single pdf file.

Filename: YourName_stat prob_sheet n.pdf (n=1,2,...)

Please no hi-res photos from phone (use iScanner or similar).
MSc/MSci students: upload on moodle.
PhD students: email to g.cowan@rhul.ac.uk with exact subject line:
statistics problem sheetn (n=1,2,...)
For MSc/MSci students, written exam at end of year (May 2026).
Msc/Msci: Exam worth 80%, problem sheets 20%.

For PhD students, no statistics exam.
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Computing

The coursework includes short computer programs.
Some choice of language — best to use python (version 3).

Also possible to use C++ in linux environment. This requires
specific software (ROOT and its class library) — cannot just use
e.g. visual C++

For PhD students, can use your own accounts — usual HEP
setup should be OK.

For MSc/MSci students, if you want to use C++ you should
request an account on the RHUL linux cluster. You create an X-

Window on your local machine (e.g. laptop), and from there
you remotely login to RHUL.

For mac, install XQuartz from www.xquartz.organd open
a terminal window. For windows, various options, e.g.,
mobaXterm or cygwin/X (more info on web page).
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Course QOutline

Probability, Bayes’ theorem

Random variables and probability densities
Expectation values, error propagation
Catalogue of pdfs

The Monte Carlo method

Statistical tests: general concepts

Test statistics, multivariate methods
Goodness-of-fit tests

Parameter estimation, maximum likelihood
More maximum likelihood

Method of least squares

Interval estimation, setting limits

Nuisance parameters, systematic uncertainties
Examples of Bayesian approach
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Some statistics books, papers, etc.

G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998

R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in
the Physical Sciences, Wiley, 1989

llya Narsky and Frank C. Porter, Statistical Analysis Techniques in
Particle Physics, Wiley, 2014.

Luca Lista, Statistical Methods for Data Analysis in Particle Physics,
Springer, 2017.

L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986

F. James., Statistical and Computational Methods in Experimental
Physics, 2nd ed., World Scientific, 2006

S. Brandt, Statistical and Computational Methods in Data Analysis,
Springer, New York, 1998.

S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001
(2024); pdg . 1bl.gov sections on probability, statistics, MC.
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Statistical Data Analysis
Lecture 1-2

e Tasks of statistical data analysis in science
e The role of uncertainty

e Definition of probability
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Theory < Statistics © Experiment

Theory (model, hypothesis): Experiment (observation):

-:-_-G\th'z.
TL | N ©

+ response of measurement
A

apparatus

= model prediction

. / data

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 1



Some tasks of statistical data analysis

Compare data to predictions of competing models
Most models contain adjustable parameters
(e.g., particle physics: G, M,, a,, m,...)

Estimate (measure) the unknown parameters
Quantify uncertainty in parameter estimates

Test and quantify the extent to which the model is in agreement
with the data.
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Uncertainty

Uncertainty enters on several levels

Measurements not in general exactly reproducible
Quantum effects .
Random effects (even without QM) " 'ﬁ\: >

Model prediction uncertain
Approximations used to extract theoretical prediction

Modeling of apparatus

Quantify the uncertainty using PROBABILITY
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Consider a set S (the sample space)

Interpretation of elements left open,
S could be e.g. set of outcomes of a
repeatable observation. <

Label subsets of Sas A, B, ...

A definition of probability

Kolmogorov (1933)

Forall ACc S,P(A) >0
P(S) =1
If AnNB=0,P(AuB)=P(A)+ P(B)
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Properties of Probability

From the axioms of probability, further properties can be
derived, e.g.,

P(A) =1-PA)

P(AUA)=1

P(0) =0

if AC B, then P(A) < P(B)
P(AUB) = P(A)+ P(B) - P(ANn B)

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 1

13



Conditional probability

Start with sample space S (e.g., set of outcomes), then restrict
to a subset B (with P(B) # 0).

Define conditional probability of A given B (~4t" axiom):

P(AN B)
P(B)

P(A|B) =

E.g. rolling die, outcome n=1,2,...,6:

P((n<3)Nneven) 1/6 1

P(n <3 _ _ 16 _1
(n < 3|n even) P(n even) 3/6 3
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Independence

Subsets A, B independent if: P(ANB) = P(A)P(B)

If A, Bindependent, P(A|B) = P(ﬁil;%B) = P(A)

l.e. if A, B, independent, imposing one has no effect on the
probability of the other.

N.B. do not confuse with disjoint subsets, i.e., AN B=0
E.g. dice: A=neven,B=nodd,AnB=0
P(A) =%
P(A|B) =0
Requiring B affects probability of A, so A, B not independent.
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Statistical Data Analysis
Lecture 1-3

e |nterpretation of probability
e Bayes’ theorem

e Law of total probability
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Interpretation of Probability

|. Relative frequency (— “frequentist statistics”)
A, B, ... are (subsets of) outcomes of a repeatable experiment

outome is in A

P(A) = lim

n—00 n

Il. Subjective probability (— “Bayesian statistics”)
A, B, ... are hypotheses (statements that are true or false)

P(A) = degree of belief that true hypothesisisin 4

e Both interpretations consistent with Kolmogorov axioms.

e |n particle physics frequency interpretation often most
useful, but subjective probability can provide more natural
treatment of non-repeatable phenomena: systematic
uncertainties, probability that magnetic monopoles exist,...
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Bayes theorem

From the definition of conditional probability we have
P(AN B) P(BNA)
P(B)

but P(ANB) = P(BNA),so

P(A|B) = and P(BJA) =

P(A)

P(B|A)P(A) | Bayes
P(B) theorem

P(A|B) =

First published (posthumously) by the
Reverend Thomas Bayes (1702-1761)

An essay towards solving a problem in the doctrine
of chances, Philos. Trans. R. Soc. 53 (1763) 370

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 1 18



The law of total probability B

Consider a subset B of
the sample space S, S .

divided into disjoint subsets 4,
such that U, 4; = §,

—>B:BQS:BH(UiAi):Ui(BﬂAi), B0 4,
L P(B) = P(Ui(BN A)) = 5 P(BN A
— P(B) =3, P(B|A;)P(4;)

P(B|A)P(A)

Bayes’ theorem becomes | P(A|B) =
> P(B|A;)P(A;)
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An example using Bayes theorem
Suppose the probability (for anyone) to have a disease D is:

P(D) = 0.001 <« prior probabilities, i.e.,

before any test carried out
PmoD) = 0.999 y
Consider a test for the disease: result is + or —

P(+|D) = 0.98 «— probabilities to (in)correctly

P(—|D) = 0.02 identify a person with the disease
P(+[no D) = 0.03 — probabilities to (in)correctly
P(—=noD) = 0.97 identify a healthy person

Suppose your result is +. How worried should you be?
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Bayes theorem example (cont.)

The probability to have the disease given a + result is

P(+|D)P(D)
P(+|D)P(D) 4+ P(+|no D)P(no D)

p(Dl+) =

0.98 x 0.001
0.98 x 0.001 + 0.03 x 0.999

— 0032 <« posterior probability

i.e. you're probably OK!
Your viewpoint: my degree of belief that | have the disease is 3.2%.

Your doctor’s viewpoint: 3.2% of people like this have the disease.

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 1

21



Frequentist Statistics — general philosophy

In frequentist statistics, probabilities are associated only with
the data, i.e., outcomes of repeatable observations (shorthand: x).

Probability = limiting frequency
Probabilities such as

P (string theory is true),
P(0.117 < a, < 0.119),
P (Whitmer wins in 2028),

etc. are either O or 1, but we don’t know which.

The tools of frequentist statistics tell us what to expect, under

the assumption of certain probabilities, about hypothetical
repeated observations.

Preferred theories (models, hypotheses, ...) are those that
predict a high probability for data “like” the data observed.
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Bayesian Statistics — general philosophy

In Bayesian statistics, use subjective probability for hypotheses:

probability of the data assuming

hypothesis H (the likelihood) N V4 prior probability, i.e.,

before seeing the data

o P@H)(H)
/P (H|Z) [ P(Z|H)x(H) dH

posterior probability, i.e., \ normalization involves sum
after seeing the data over all possible hypotheses

Bayes’ theorem has an “if-then” character: If your prior
probabilities were 7(H), then it says how these probabilities
should change in the light of the data.

No general prescription for priors (subjective!)
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Statistical Data Analysis
Lecture 1-4

e Random variables

e Probability (density) functions:
— joint pdf
— marginal pdf

— conditional pdf
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24



Random variables and probability density functions

A random variable is a numerical characteristic assigned to an
element of the sample space; can be discrete or continuous.

Suppose outcome of experiment is continuous value x

P(x found in [z, + dz]) = f(x) dx
— f(x) = probability density function (pdf)

0.0
/ f(x)de =1 x must be somewhere
O
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Probability mass function

For discrete outcome x; withe.g. i =1, 2, ... we have
P(x;) = p; probability (mass) function

Y P(z;) =1 x must take on one of its possible values
1

P(x:)

L]

‘;L‘}'g_,"""‘
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Cumulative distribution function

Probability to have outcome less than or equal to x is

/x f(z") da' = F(x) cumulative distribution function
— OO

F(x)

J)

03 | @
OF (x
Alternatively define pdf with f(x) = 8( )
x
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Quantiles
Define quantile (a-point) x, by F(x,)=a (0< a<1)

%, T T T T ,‘: 1
= ~—
e e
0.75 r =
02 r -
05 =
i g 0.25 | g
0 | | | 0
0 2 4 6 8 10 0 2 <4 6 8 10
X X

i.e., quantile x,, is inverse of cumulative distribution: x, = F~!(«),
Special case of quantile: x,, = median

(compare to peak of pdf = mode)
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Histograms

Data sample x = (x1,..., X,),

# events n could be very large.

— Histogram N = (N,,..., Ny,)

M bins, bin size Ax.

10

pdf = histogram with infinite

data sample, zero bin width,

normalized to unit area.

N(x)

f(fU):m

N

300

200

100

{a)

10

10

N(x)

1)

0.5

D4

D.3

0.2

D.1

10

Often normalize histogram to unit area, compare directly to pdf.
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Multivariate distributions, joint pdf

Outcome of experiment charac- 10 .
. y ,
terized by several values, e.g. an . | o eventd : _
n-component vector, (x, ... x,) o
6 .
Y -
4 i R ; éventB ]
P(ANB) = f(z,y) dzdy ]
/ L - :
. . 0 | | |
JOInt pdf 0 2 4 6 8 10

/---/Rf(acl,...,;r:n)dan--'d-’IJnZP(XER)

Normalization: /---/f(m,...,:z:n)d:cl---d:vn =1

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 1

30



Marginal pdf

10 T
: Y event 4
Sometimes we want only pdf of - ‘< — .
some (or one) of the components: T e
6 . =
P(A) = Y P(ANB) i —
7 4 R ' cjj; \evemB
1 =3 dx
— /f(:z:,y)dydm - 2 . 6 g 10

fo(z) = /f(iv,y) dy  marginal pdf

E.g. to find marginal pdf of x, from n-dim. joint pdf, integrate over
all variables except x; :

fl(ibl)=/---/f(xl,...,xn)dmg...datn
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I\/Iargmal pdf (2)

G. Cowan / RHUL Physics

S

0.5

0.4

0.3

0.2

0.1

Marginal pdf is the
projection of joint pdf
onto individual axes.
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Conditional pdf

Sometimes we want to consider some components of joint pdf as
constant. Recall conditional probability:

P(AN B) _ f(x,y)dx dy
P(A) fz(x) dx

f(z,y)

~ f(x,y)
9(ely) = fu(y)

P(B|A) =

— conditional pdfs:  h(y|x) =

E.g. h(y|x) is a pdf for y, here x is fixed.
The denominator fixes normalization so that / h(yle)dy =1
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Conditional pdf (2)
E.g. joint pdf f(x,y) used to find conditional pdfs A(y|x,), A(y|x,):

f b
10 — 05
? 11 -
J ¥ (a) = ()
s b o ' 0.4
tr
S
SN
g S 0.3
--_ |-1
37 )
: SR
4 [l X 0.2
R S
[ N
£ N
2 F " 01 r
— k— alx —4 ke gl
N
1
ﬂ 111 |:| e}
0 2 4 6 g 10 d 2 4 G 8 10

-
Tt

Basically treat some of the r.v.s as constant, then divide the joint
pdf by the marginal pdf of those variables being held constant so
that what is left has correct normalization, e.g., /h(y|gj) dy=1.

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 1 34



Bayes’ theorem, independence for conditional pdf

h(y|x)fa:($)
fy(y) '

Bayes’ theorem becomes: g(z|y) =

Recall A, B independentif P(ANB) = P(A)P(B).
— x, v independent if f(x,y) = fz(x)fy(y) .

Then e.g. fixing y has no effect on pdf of x:

_E@AW
glaly) = FEEE = fu()
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Lecture 1-5

e Functions of random variables
— Single variable, unique inverse
— Function without unique inverse

— Functions of several random variables
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Functions of a random variable

A function of a random variable is itself a random variable.

£cx)
Suppose x follows a pdf f(x) A
1 -
x
R B
Consider a function a(x) eq. oa=x

3"1)
What is the pdf g(a)? ’ &
CL
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Function of a single random variable

General prescription: g(a)da = /dS f(x)dx

dS = region of x space for which a is in [a, atdal].

<
(a)
81 For one-variable case with unique
L inverse this is simply
L
L7
da g((l) da = f(ZL') dx
2 -
—A = dy dw
L ~ ga) = f(@(@) |-
0 2 4 10 a
X
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Example: function with unique inverse

£Cxn
a = - K |
—oL Ix o
X = 2 1 <
?fﬂ-) = S-(x(.m\)l% = lim -2 {
— 20n
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Functions without unique inverse

If inverse of a(x) not unique,
include all dx intervals in dS

—_~

>
~
©

which correspond to da: *
da
g(a) = 3 flai(a)) |2 o
P da :Cz'(a,)
X1 X2 "
. 2 dxri9 1
Example: a(z) =2%, zi1(a) = —va, x3(a) = Va, daj —F

dS = |r1,x1 + dr1| U [z9, 19 + duo]

g(a) = f(x1(a))

G. Cowan / RHUL Physics

d_a:
da

z1(a)

dx

x| f(—va
da

xo(a) 2\/&

+ f(x2(a))
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Change of variable example (cont.)

r+1
Suppose the pdf of xis  f(z) = 5 —-1<2z<1
and we consider the function a(z) =2z (s00<a<1)
and the inverse has two parts: r = ++/a

To get the pdf of a we include the contributions from both parts:

g(a)_—\/_+1 \/a+1:L, 0<a<1
2.-2y/a  2-2y/a  2ya
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Functions of more than one random variable

Consider a vector r.v. x = (x, ..., x,,) that follows f(x,, ..., x,)
and consider a scalar function a(x).

The pdf of a 1s found from

g(a)da' = / : ./dsf(xl, ..., Zp)dry...don
dS = region of x-space between (hyper)surfaces defined by

a(@) = d, a(@) = d + dd’
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Functions of more than one r.v. (2)

Example: rv.s x, y > 0 follow joint pdf f(x,y),

consider the function z=xy. What s g(z)?

g(z)dz = ].../dsf(a:,y)dwdy

/OOO dx fz (:rdZ)/m f(z,y) dy

z . dx

| = o = [Treh®

4 y
S [T G
0 1 2 3 4 5 0 Y (Y

(Mellin convolution)
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More on transformation of variables

Consider a random vector # = (z1,...,zn) With joint pdf f(&).
Form n linearly independent functions #(Z) = (y1(2), ..., yn(Z))
for which the inverse functions z1 (%), ..., zn (%)

Then the joint pdf of the vector of functions is ¢(y) = |J|f (&)

Or1 0Oz Ox1

where Jis the dy1  Oy2 Fyn
Oro 0Oxo Oxo

Jacobian determinant: J = | %1 9¥2 Iyn
Ozn

Oyn,

Fore.g. 91(y1) integrate g(%) over the unwanted components.

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 1 44



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

