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Some distributions
Distribution/pdf Example use in Particle Physics

Binomial   Branching ratio

Multinomial  Histogram with fixed N

Poisson   Number of events found

Uniform   Monte Carlo method

Exponential  Decay time

Gaussian   Measurement error

Chi-square   Goodness-of-fit

Cauchy   Mass of resonance

Landau    Ionization energy loss

Beta    Prior pdf for efficiency

Gamma   Sum of exponential variables

Student’s t   Resolution function with adjustable tails
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Statistical Data Analysis
Lecture 3-1

• Continuous probability density functions

– Uniform

– Exponential
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Uniform distribution

Consider a continuous r.v. x with −∞ < x < ∞ .  Uniform pdf is:

Notation:  x follows a uniform distribution between α and β

write as: x ~ U[α,β]
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Very often used with  α = 0, β = 1 (e.g., Monte Carlo method).

For any r.v. x with pdf f (x), cumulative distribution F(x), the 
function  y = F(x) is uniform in [0,1]:

Uniform distribution (2)

because f (x) = dF/dx = dy/dx
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Uniform distribution: particle detector example

sense wires,
spacing d

yi

yi + d/2

yi – d/2

Vertical (y) position of particle’s 
trajectory uniformly distributed over 
perpendicular plane of sense wires.

If i-th wire gives signal, 

 estimated y position is yi, 

 actual y position ~ U[yi – d/2, yi + d/2],

 V[y] =  (yi + d/2 – (yi – d/2))2 / 12 = d2
 / 12,

 position resolution = σy = d/√12

Sense wire closest 
to passage of 
particle gives signal.

incident particle

z

y
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Uniform distribution: particle decay example
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Exponential distribution

The exponential pdf for the continuous r.v. x is defined by:
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Example:  proper decay time t of an unstable particle

( = mean lifetime)

Lack of memory (unique to exponential):

Exponential distribution (2)

Question for discussion:

A cosmic ray muon is created 30 km high in the atmosphere, 
travels to sea level and is stopped in a block of scintillator, giving a 
start signal at t0.  At a time t it decays to an electron giving a stop 
signal.  What is distribution of the difference between stop and 
start times, i.e., the pdf of t – t0 given t > t0?
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Statistical Data Analysis
Lecture 3-2

• The Gaussian (normal) distribution

– Univariate Gaussian

– Standardized random variables

– Location and scale parameters

– Central Limit Theorem

– Multivariate Gaussian
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Gaussian (normal) distribution

The Gaussian (normal) pdf for a continuous r.v. x is defined by:

N.B. often , 2 denote
mean, variance of any
r.v., not only Gaussian.
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Standardized random variables

If a random variable y has pdf f (y) with mean μ and std. dev. σ, 
then the standardized variable

has mean of zero and standard deviation of 1.

Often work with the standard Gaussian distribution (μ = 0. σ = 1)
using notation:

Then e.g. y = μ + σx follows

has the pdf 
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Digression:  location/scale parameters

If a pdf f (x; a) depending on a parameter a can be written as

then a is called a location parameter.  Adjusting a shifts the pdf
to the right/left without changing its shape.  

The parameter μ of the Gaussian is an example of a location 
parameter.
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Digression:  location/scale parameters (2)

If a pdf f (x; b) depending on a parameter b can be written as

then b is called a scale parameter.  Adjusting b changes the ”units”
of the random variable.  

The parameter ξ of the exponential
is an example of a scale parameter.

Or if a pdf f (x; a, b) has a location parameter a and can be written

then a and b are said to be location and scale parameters. 
Example: μ and σ of Gaussian.  
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Gaussian pdf and the Central Limit Theorem

The Gaussian pdf is so useful because almost any random
variable that is a sum of a large number of small contributions
follows it.  This follows from the Central Limit Theorem:

For n independent r.v.s xi with finite variances i
2, mean values 

μi, otherwise arbitrary pdfs, consider the sum

Measurement errors are often the sum of many contributions, so 
frequently measured values can be treated as Gaussian r.v.s.

In the limit n → ∞, y is a Gaussian r.v. with
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Central Limit Theorem (2)

Versions of CLT differ in criteria for convergence and 
requirement (or not) of same pdf for all xi.

See e.g. en.wikipedia.org/wiki/Central_limit_theorem

Classical CLT:  all xi independent and have same pdf with finite 
variance, can be proved using characteristic functions (Fourier 
transforms), see, e.g., SDA Chapter 10.

Physicist’s CLT:  for finite n, the sum Σi=1
n xi becomes 

approximately Gaussian to the extent that the fluctuation of  
the sum is not dominated by one (or few) terms.

Far enough in the tails the approximation generally breaks 
down.
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Central Limit Theorem (3)

Good example:  velocity component of air molecule vx = Σi δvxi

 If vx, vy, vz ~ Gaussian, then

 v = (vx
2 + vy

2 + vz
2)1/2 ~ Maxwell-Boltzmann

OK example:  total deflection of charged particle from multiple 
Coulomb scattering. (Rare large-angle scatters → non-Gaussian tail.)

Bad example:  energy loss of charged particle traversing thin
gas layer.  Rare collisions make up large fraction of energy loss,
cf. Landau pdf.
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Multivariate Gaussian distribution

Multivariate Gaussian pdf for the vector 

are column vectors, are transpose (row) vectors, 

Marginal pdf of each xi is Gaussian with mean μi, standard 
deviation σi = √Vii .
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https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Two-dimensional Gaussian distribution

where  = cov[x1, x2]/(12) 

is the correlation coefficient.
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Statistical Data Analysis
Lecture 3-3

• More continuous probability density functions

– Chi-square

– Cauchy

– Landau

– Beta

– Gamma

– Student’s t
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Chi-square (χ2) distribution

The chi-square pdf for the continuous r.v. z  (z ≥ 0) is defined by

n = 1, 2, ... =  number of ‘degrees of
                       freedom’ (dof)

For independent Gaussian xi, i = 1, ..., n, means μi, variances σi
2,

follows χ2 pdf with n dof.

Example:  goodness-of-fit test variable especially in conjunction
with method of least squares.
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Cauchy (Breit-Wigner) distribution

The Breit-Wigner pdf for the continuous r.v. x is defined by

(Γ = 2, x0 = 0 is the Cauchy pdf.)

E[x] not well defined,   V[x] → ∞.

x0 = mode (most probable value)

Γ = full width at half maximum

Example:  mass of resonance particle, e.g. ρ, K*, φ0, ...

Γ = decay rate (inverse of mean lifetime)
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Landau distribution

For a charged particle with β = ν /c traversing a layer of matter
of thickness d, the energy loss Δ follows the Landau pdf:

L. Landau, J. Phys. USSR 8 (1944) 201; see also
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.

+ - + - 

- + - + 
β

d

Δ
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Landau distribution  (2)

Long ‘Landau tail’

     →  all moments ∞

Mode (most probable 
value) sensitive to β ,

 →  particle i.d.
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Beta distribution

Often used to represent pdf 
of continuous r.v. nonzero only
between finite limits, e.g.,
y = a0 + a1x,    a0 ≤ y ≤ a0 + a1

,            0 ≤ x ≤ 1
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Gamma distribution

Often used to represent pdf 
of continuous r.v. nonzero only
in [0,∞].

Also e.g. sum of n exponential
r.v.s or time until nth event
in Poisson process ~ Gamma

,             x ≥ 0
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Student's t distribution

ν = number of degrees of freedom
      (not necessarily integer)

ν = 1 gives Cauchy,

ν → ∞ gives Gaussian.
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Student's t distribution (2)
If x ~ Gaussian with μ = 0, σ2 = 1, and 

    z ~ χ2 with n degrees of freedom, then

    t = x / (z/n)1/2  follows Student's t with ν = n.

This arises in problems where one forms the ratio of a sample 
mean to the sample standard deviation of Gaussian r.v.s.

The Student's t provides a bell-shaped pdf with adjustable
tails, ranging from those of a Gaussian, which fall off very
quickly, (ν → ∞, but in fact already very Gauss-like for 
ν =  two dozen),  to the very long-tailed Cauchy (ν = 1). 

Developed in 1908 by William 
Gosset, who worked for the 
Guinness Brewery and published
under the pseudonym “Student”.
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Statistical Data Analysis
Lecture 3-4

• The Monte Carlo method

– basic ingredients

– random number generators

– transformation method

– acceptance-rejection method

– example uses



What it is:  a numerical technique for calculating probabilities
and related quantities using sequences of random numbers.

The usual steps:

(1) Generate sequence r1, r2, ..., rm independent and             
uniform on [0, 1].

(2)  Use this to produce another sequence x1, x2, ..., xn

       independent and distributed according to some pdf  f (x) in  
 which we’re interested (x can be a vector).

(3)   Use the x values to estimate some property of  f (x), e.g.,
        fraction of x values with a < x < b gives

 →  MC calculation = integration (at least formally)

MC generated values = ‘simulated data’
 →  use for testing statistical procedures
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The Monte Carlo method
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Random number generators

Goal:  generate uniformly distributed values in [0, 1].

 Toss coin for e.g. 32 bit number... (too tiring).

 →  ‘random number generator’ 

       = computer algorithm to generate r1, r2, ..., rn.

Example:  multiplicative linear congruential generator (MLCG)

 ni+1 = (a ni) mod m ,    where

 ni = integer

 a = multiplier

 m = modulus

 n0 = seed (initial value)

N.B.  mod = modulus (remainder), e.g.   27 mod 5 = 2.

This rule produces a sequence of numbers n0, n1, ...
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Random number generators  (2)

The sequence is (unfortunately) periodic!

 Example (see Brandt Ch 4):  a = 3, m = 7, n0 = 1

←  sequence repeats

Choose a, m to obtain long period (maximum = m − 1); m usually 
close to the largest integer that can represented in the computer.

 Only use a subset of a single period of the sequence.
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Random number generators  (3)
ri = ni / nmax are in [0, 1] but are they independent and uniform?

Choose a, m so that the ri pass various tests of randomness:

 uniform distribution in [0, 1],

 all values independent (no correlations between pairs),

e.g. L’Ecuyer, Commun. ACM 31 (1988) 742 suggests

    a = 40692

    m = 2147483399

Far better generators available, e.g. TRandom3, based on Mersenne
twister algorithm, period = 219937 − 1 (a “Mersenne prime”).
See F. James, Comp. Phys. Comm. 60 (1990) 111; Brandt Ch. 4.

r i
+

1

rir

N
(r

)
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The transformation method

Given r1, r2,..., rn uniform in [0, 1], find x1, x2,..., xn

that follow  f (x) by finding a suitable transformation  x (r).

Require:

i.e.

That is,       set and solve for  x(r).
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Example of the transformation method

Exponential pdf:

Set and solve for  x (r).

→ works too.)
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The acceptance-rejection method

Enclose the pdf in a box:

(1)  Generate a random number x, uniform in [xmin, xmax], i.e.

r1 is uniform in [0,1].

(2)  Generate a 2nd independent random number u uniformly

       distributed between 0 and  fmax, i.e.

(3)  If u <  f (x), then accept x.  If not, reject x and repeat.
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Example with acceptance-rejection method

If dot below curve, use 
x value in histogram.
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Improving efficiency of the 
acceptance-rejection method

The fraction of accepted points is equal to 
the fraction of the box’s area under the curve.

 For very peaked distributions, this may be very low and
 thus the algorithm may be slow.

Improve by enclosing the pdf f(x) in a curve C h(x) that conforms 
to f(x) more closely, where h(x) is a pdf from which we can 
generate random values and C is a constant.

Generate points uniformly 
over C h(x).

If point is below f(x), 

accept x.
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Monte Carlo event generators

Simple example:  e+e− → μ+μ−

Generate cosθ and φ:

Less simple:  ‘event generators’ for a variety of reactions: 
  e+e− → μ+ μ−, hadrons, ...

  pp → hadrons, D-Y, SUSY,...

e.g. PYTHIA, HERWIG, ISAJET...

Output = ‘events’, i.e., for each event we get a list of
generated particles and their momentum vectors, types, etc.
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A simulated event

PYTHIA Monte Carlo
pp → gluino-gluino
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Monte Carlo detector simulation
Takes as input the particle list and momenta from generator.

Simulates detector response:
 multiple Coulomb scattering (generate scattering angle),
 particle decays (generate lifetime),
 ionization energy loss (generate Δ),
 electromagnetic, hadronic showers,
 production of signals, electronics response, ...

Output = simulated raw data →  input to reconstruction software:
 track finding, fitting, etc. 

Predict what you should see at ‘detector level’ given a certain 
hypothesis for ‘generator level’.  Compare with the real data.

Programming package:  GEANT
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Extra slides
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Importance Sampling
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Importance Sampling (2)
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Importance Sampling (3)
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