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Statistical Data Analysis
Lecture 4-1

e Frequentist statistical tests
— Hypotheses

— Definition of a test
e critical region
* size
* power

— Type-l, Type-Il errors
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Hypotheses

A hypothesis H specifies the probability for the data, i.e., the
outcome of the observation, here symbolically: x.

x could be uni-/multivariate, continuous or discrete.
E.g. write x ~ P(x|H).

x could represent e.g. observation of a single object,
a single event, or an entire “experiment”.

Possible values of x form the sample space S (or “data space”).
Simple (or “point”) hypothesis: P(x|H) completely specified.
Composite hypothesis: H contains unspecified parameter(s).

P (x|H) is also called the likelihood of the hypothesis H, often
written L(H) if we want to emphasize just the dependence on H.
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Definition of a test

Goal is to make some statement based on the observed data x
about the validity of the possible hypotheses (here, “accept or
reject”).

I”

Consider a simple hypothesis H, (the “null”) and an alternative H,.

A test of H,, is defined by specifying a critical region W of the
sample (data) space S such that there is no more than some (small)
probability (; assuming H, is correct, to observe the data there,
l.e.,

PxeW|Hy)<(

('is called the size of the test, S
prespecified equal to some small

value, e.g., 0.05. Q

If x is observed in the critical \
region, reject H,,. W
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Definition of a test (2)

But in general there are an infinite number of possible critical
regions that give the same size (.

Use the alternative hypothesis A, to motivate where to place the
critical region.

Roughly speaking, place the critical region where there is a low
probability (a) to be found if H, is true, but high if H, is true:

(IR $(x\H,) |[—=W
™

stze A
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Obvious where to put 7

In the 1930s there were great debates as to the role of the
alternative hypothesis.

Fisher held that one could test a hypothesis H, without reference
to an alternative.

Suppose, e.g., H, predicts that x (suppose positive) usually comes
out low. High values of x are less characteristic of H,, so if a high
value is observed, we should reject H,, i.e., we put W at high x:

§ CxlH)
i . If we see x
/ here, reject H,,.

X
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Or not so obvious where to put W?

But what if the only relevant alternative to H, is H, as below:

( f SR

Here high x is more characteristic of H,, and not like what we
expect from H,. So better to put ¥ at low x.

Neyman and Pearson argued that “less characteristic of H,” is
well defined only when taken to mean “more characteristic of

some relevant alternative H,”.
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Type-l, Type-Ill errors

Rejecting the hypothesis H, when it is true is a Type-I error.
The maximum probability for this is the size of the test:

But we might also accept H, when it is false, and an alternative
H, is true.

This is called a Type-Il error, and occurs with probability
PxeS-W|H )=®

One minus this is called the power of the test with respect to
the alternative H,:

Power =/ — ®
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Rejecting a hypothesis

Note that rejecting H, is not necessarily equivalent to the
statement that we believe it is false and H, true. In frequentist
statistics only associate probability with outcomes of repeatable
observations (the data).

In Bayesian statistics, probability of the hypothesis (degree
of belief) would be found using Bayes’ theorem:

. P(z|H)m(H)
P(H|z) = [P(x|H)x(H)dH

which depends on the prior probability /{H).

What makes a frequentist test useful is that we can compute
the probability to accept/reject a hypothesis assuming that it
is true, or assuming some alternative is true.
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Statistical Data Analysis
Lecture 4-2

e Particle Physics example for statistical tests

e Statistical tests to select objects/events
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Example setting for statistical tests:
the Large Hadron Collider

Counter-rotating proton beams
in 27 km circumference ring

pp centre-of-mass energy 14 TeV

Detectors at 4 pp collision points:

ATLAS
CMS > general purpose

LHCb (b physics)
ALICE (heavy ion physics)
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The ATLAS detector

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

3000 physicists
38 countries
183 universities/labs

Toroid Magnets  Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

25 m diameter
46 m length

7000 tonnes
~108% electronic channels
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A simulated SUSY event

high p-. jets
of hadrons

missing transverse energy
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Background events

ATLAS Atlantis

This event from Standard
Model ttbar production also
has high p. jets and muons,
and some missing transverse
energy.

— can easily mimic a
signal event.
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Classification viewed as a statistical test
Suppose events come in two possible types:
s (signal) and b (background)
For each event, test hypothesis that it is background, i.e., H, = b.

Carry out test on many events, each is either of type sor b, i.e.,
here the hypothesis is the “true class label”, which varies randomly
from event to event, so we can assign to it a frequentist probability.

Select events for which where H, is rejected as “candidate events of
type s”. Equivalent Particle Physics terminology:

background efficiency g, = f f(x|Hp) dx = «
W

signal efficiency Eg = fw f(x|H1)dx =1 — 3 = power
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Example of a test for classification

5

Suppose we can measure for —— signal
each event a quantity x, where 41 —— background
_ 3 Xc
f(z]s) =2(1 —x) = W
2_
f(]b) = 423 1\
1 a
with 0< x < 1. IS

0 . . .
0.0 0.2 0.4 0.6 0.8 1.0
X

For each event in a mixture of signal (s) and background (b) test
H,:eventisof typeb

using a critical region W of the form: W= {x:x<x_}, where
X. is a constant that we choose to give a test with the desired size a.
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Classification example (2)

Suppose we want o = 10™*.  Require:

a=Plx < x.|b) = /wcf(x|b)daf: — ==X
0

and therefore x. = o/t =0.1

For this test (i.e. this critical region V), the power with respect
to the signal hypothesis (s) is

M = P(x < x.ls) = / f(z|s) dx = 22. — 2% = 0.19
0

Note: the optimal size and power is a separate question that will

depend on goals of the subsequent analysis.
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Classification example (3)

Suppose that the prior probabilities for an event to be of
type s or b are:

7, = 0.001
7, = 0.999

The “purity” of the selected signal sample (events where b
hypothesis rejected) is found using Bayes’ theorem:

P(x < x.|s)ms
P(s|z < o) = =
(Sl < @) P(x < zcls)ms + Pz < 2c|b)m,

= 0.655
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Classification example (4)

Suppose an individual event is observed at x =0.1. What is
the probability that this event is background?

f(x[b)m,
(x[b)mp + f(2]s)ms

P(blx) = 7

A3,
43y, + 2(1 — x) e

= (0.6389

(Here nothing to do with the test using x
of Bayes’ theorem.)

<Xx

just an illustration
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Statistical Data Analysis
Lecture 4-3

e Hypothesis test for classification
e Test statistic to define critical region

e Neyman-Pearson lemma
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Classifying fish

You scoop up fish which are of two types:

Sea

Bass Coa

You examine the fish with automatic sensors and for each one
you measure a set of features:

x; = length x, = area of fins
X, = width xs = mean spectral reflectance
X; = weight Xg= ...

These constitute the “feature vector” x = (x,,..., x,).

IH

In addition you hire a fish expert to identify the “true class labe
y=0or1(i.e., 0=seabass, 1=cod) for each fish. We thus obtain

“training data”: (x, ), (X, )5, ..., (X, V) -
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Distributions of the features

If we consider only two
features x = (x;, x,), we can
display the results in a scatter
plot (red: y =0, blue: y=1).

X1

Goal is to determine a decision boundary, so that, without the help
of the fish expert, we can classify new fish by seeing where their
measured features lie relative to the boundary.

Same idea in multi-dimensional feature space, but cannot
represent as 2-D plot. Decision boundary is n-dim. hypersurface.
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Decision function, test statistic

A surface in an n-dimensional
space can be described by

t(mlj v !IHJ = tc

/N

scalar

function constant

Different values of the constant
t. result in a family of surfaces.

Problem is reduced to finding
the best decision function or test
statistic 7(x).
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Distribution of #(x)

By forming a test statistic #(x), the boundary of the critical region in
the n-dimensional x-space is determined by a single single value ¢..

20.01
17.51
5ol || SUHY) f(tH))
125 t \ -
I A T
7.5 }
5.0 -
00 ofm 0.6 0.8 1.0

decision function t
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Types of decision boundaries

So what is the optimal boundary for the critical region, i.e., what
is the optimal test statistic #(x)?

First find best #(x), later address issue of optimal size of test.

Remember x-space can have many dimensions.

“cuts” linear non-linear
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Test statistic based on likelihood ratio

How can we choose a test’s critical region in an ‘optimal way’?

Neyman-Pearson lemma states:

For a test of H, of size a, to get the highest power with respect to the
alternative H; we need for all x in the critical region I/

“likelihood . P(x|Hi) _
ratio (LR)” P(x|Hy) — °

inside W and < ¢, outside, where c, is a constant chosen to give a
test of the desired size.

(x|H1)
(x|Ho)

P
Equivalently, optimal scalar test statistic is t(x) = Iz

N.B. any monotonic function of this is leads to the same test.
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Proof of Neyman-Pearson Lemma

Consider a critical region ¥ and suppose the LR
satisfies the criterion of the Neyman-Pearson
lemma:

P(x|H,)/P(x|H,) > c, forallxin ¥,
P(x|H,)/P(x|H,) < ¢, forallxnotin .

Try to change this into a different critical
region WW'retaining the same size g, i.e.,

P(X < W’|H0) — P(X < W|H0) =

To do so add a part oV, but to keep the
size a, we need to remove a part oW, i.e., W'

W—>W,:W+(5W+—(5W_
P(x € 0W|Hy) = P(x € 0W_|H))

oW,

oW_
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Proof of Neyman-Pearson Lemma (2)

oW,

But we are supposing the LR is higher for

all x in oW_ removed than for the x in
oW, added, and therefore

P(X = (5W_|_|H1) S P(X < 5W_|_|H0)Ca

P(x € 0W_|Hy) > P(x € 0W_|Hp)ca
The right-hand sides are equal and therefore

P(xe W |H) < P(x e dW_|Hy)
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Proof of Neyman-Pearson Lemma (3)
oW,

We have
WUW' =WUoW,. =W UdWw_

Note W and oW, are disjoint, and
W'and oW_ are disjoint, so by
Kolmogorov’s 3" axiom,

PxeW)+PxedW_)=PkxeW)+P(xecdW,)
Therefore

P(x e W'|Hy) = P(x e W|H) + P(x € )W, |H;) — P(x € W_|Hy),

L O
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Proof of Neyman-Pearson Lemma (4)

And therefore
P(x e W'|Hy) < P(x € W|Hy)

i.e. the deformed critical region W' cannot have higher power
than the original one that satisfied the LR criterion of the
Neyman-Pearson lemma.
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Statistical Data Analysis
Lecture 4-4

e Why the Neyman-Pearson lemma usually doesn’t help us
e Strategies for multivariate analysis

e Linear discriminant analysis
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Neyman-Pearson doesn’t usually help

We usually don’t have explicit formulae for the pdfs f(x|s), f(x[b),
so for a given x we can’t evaluate the likelihood ratio

f(x[s)
f(x|0)

Instead we may have Monte Carlo models for signal and
background processes, so we can produce simulated data:

t(x) =

generate x ~f(x|s) — Xx[,..., Xy

generatex ~ f(xlb) — Xxp,..., Xy
This gives samples of “training data” with events of known type.

Can be expensive (1 fully simulated LHC event ~ 1 CPU minute).
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How is it we don’t have f(x|H)?

In a Monte Carlo simulation of a complex process, the
fundamental hypothesis does not predict the pdf for the finally
measured variables x but rather for some intermediate set of
“latent” variables, say, z;.

Soin step 1 we sample z, ~ f(z,|H), followed by many further
intermediate steps:

<3 ~f(z2|z1) See, e.g., Kyle Cranmer, Johann
Brehmer, Gilles Louppe, The frontier of
33 Nf (Z3|Z2) simulation-based inference,
. arXiv:1911.01429 [stat.ML], PNAS
* doi.org/10.1073/pnas.1912789117
x ~ f(x]z,)

So even though H is fully defined and we can generate x
according to it, the formula for f(x|H) is an enormous integral
that we cannot compute:

f(x|H) /"'/dzl'”dznf(x|zn)f(zn|zn—1)”'f(ZZ|Zl)f(ZI|H)
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Approximate LR from histograms

Want #(x) = f(x|s)/f(x|b) for x here

\/

N\

§ N(x[s) = f(x]s) ~——s
AI_I_I-T
l
— |
; o
;é N(xb) = f(xb) i

X

One possibility is to generate
MC data and construct
histograms for both

signal and background.

Use (normalized) histogram
values to approximate LR:

N(x|s)

"0 Nzl

Can work well for single
variable.
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Approximate LR from 2D-histograms

Suppose problem has 2 variables. Try using 2-D histograms:

X X
Slgnal s .“':-‘;gi:?::;s..i'“ . — - back_
(% °.‘. L T 8 . o
° . e . [ ® a ™
LR o] e { L o7 |-,
AN ol % /?.'L AR

\ Xl / Xl
Approximate pdfs using N(x,,x,|s), N(x;,x,|b) in corresponding cells.

But if we want M bins for each variable, then in n-dimensions we
have M" cells; can’t generate enough training data to populate.

—> Histogram method usually not usable for n > 1 dimension.
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Strategies for multivariate analysis

Neyman-Pearson lemma gives optimal answer, but cannot be
used directly, because we usually don’t have f(x|s), f(x|b).

Histogram method with M bins for n variables requires that
we estimate M" parameters (the values of the pdfs in each cell),

so this is rarely practical.

A compromise solution is to assume a certain functional form
for the test statistic 7(x) with fewer parameters; determine them
(using MC) to give best separation between signal and background.

Alternatively, try to estimate the probability densities f(x|s) and
f(x|b) (with something better than histograms) and use the
estimated pdfs to construct an approximate likelihood ratio.
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Multivariate methods (Machine Learning)

Many new (and some old) methods:

Fisher discriminant

Neural networks

Kernel density methods

Support Vector Machines

Decision trees
Boosting

Bagging

G. Cowan / RHUL Physics
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Resources on multivariate methods

C.M. Bishop and H. Bishop, Deep Learning: Foundations and
Concepts, Springer, 2023; https://www.bishopbook.com

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning, 2" ed., Springer, 2009

Gareth James, Daniela Witten, Trevor Hastie and Robert
Tibshirani, An Introduction to Statistical Learning, Springer,
2017, https://www.statlearning.com/

llya Narsky and Frank C. Porter, Statistical Analysis Techniques
in Particle Physics, Wiley, 2014.

wKAE (w3 , ERBITRZ s atr, B R,
JE5T, 2009,
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Software
Rapidly growing area of development —important resources:

scikit-learn
Python-based tools for Machine Learning

scikit-learn.org

Large user community

Python-based tools for deep neural networks on CPUs/GPUs:
pytorch (pytorch.org); widely used in academia/research
tensorflow (tensorflow.org); widely used in industry

TMVA, Hocker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039
From tmva.sourceforge.net, also distributed with ROOT

Variety of classifiers
Good manual, for many years the standard in HEP
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Linear test statistic

Suppose there are n input variables: x = (x,..., x,).

T
Consider a linear function: y(x) = Z W;T;
i=1

For a given choice of the coefficients w = (wy,..., w,) we will

get pdfs f(y|s) and f(y|b) :

1

T T

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 4

40



Linear test statistic

Fisher: to get large difference between means and small widths
for f(y|s) and f(y|b), maximize the difference squared of the
expectation values divided by the sum of the variances:

_ (Elyls] — E[y|b])?
T = LTV

Setting 0J/ ow, = 0 gives:
w o W (p, — ps)

W;; = cov|z;, z;|s| + cov|z;, z;|b

pis = Elz;|s], pip = Elz;
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The Fisher discriminant

The resulting coefficients w; define a Fisher discriminant.

Coefficients defined up to multiplicative constant; can also
add arbitrary offset, i.e., usually define test statistic as

Boundaries of the test’s
critical region are surfaces
of constant y(x), here linear
(hyperplanes):
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Fisher discriminant for Gaussian data

Suppose the pdfs of the input variables, f(x|s) and f(x|b), are both
multivariate Gaussians with same covariance but different means:

f(xls) = Gauss(us,

V) €— Same covariance

f(x|b) = Gauss(u,, V) e V,-j = covl|x;,, xj]

In this case it can be shown (x) ~ In f(xls)
that the Fisher discriminantis f(x|b)

i.e., it is a monotonic function of the likelihood ratio and thus
leads to the same critical region. So in this case the Fisher
discriminant provides an optimal statistical test.

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 4 43



G. Cowan / RHUL Physics

Extra slides

Statistical Data Analysis / lecture week 4

44



Choosing a critical region

To construct a test of a hypothesis H,, we can ask what are the
relevant alternatives for which one would like to have a high power.

Maximize power wrt H, = maximize probability to
reject H, if H, is true.

Often such a test has a high power not only with respect to a
specific point alternative but for a class of alternatives.
E.g., using a measurement x ~ Gauss (u, 0) we may test

H, : u =, versus the composite alternative H, : u> u,

We get the highest power with respect to any u > i, by taking
the critical region x > x, where the cut-off x_ is determined by
the significance level such that

o= P(x 2x|t)-
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Test of =, vs. u>u, with x ~ Gauss(u,0)

Standard Gaussian

udml region W cumulative distribution

\
/\ RERNEET

powey

G. Cowan / RHUL Physics

&: M X Te=po+0® (1 —a)

- \

L [t S

Standard Gaussian quantile
power =1 — 3= P(z > z.|p) =
_QL

| g 1_<1> ”“_”Jr:b—l(l—a))

T A o

0
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Choice of critical region based on power (3)

But we might consider u < u, as
well as u > u, to be viable
alternatives, and choose the

W e—
— critical region to contain both
. - ~ high and low x (a two-sided
.:(_ /"(a & o
2 = test).

New critical region now
gives reasonable power
for u < pu,, but less power
for u > u, than the original
one-sided test.
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No such thing as a model-independent test

In general we cannot find a single critical region that gives the
maximum power for all possible alternatives (no “Uniformly
Most Powerful” test).

In HEP we often try to construct a test of
H, : Standard Model (or “background only”, etc.)

such that we have a well specified “false discovery rate”,
o. = Probability to reject H, if it is true,

and high power with respect to some interesting alternative,
H, : SUSY, Z', etc.

But there is no such thing as a fully “model independent” test.
Any statistical test will inevitably have high power with respect to
some alternatives and less power with respect to others.
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