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Statistical Data Analysis
Lecture 6-1

e p-values
e Definition
e |mportant properties

e Relationship to hypothesis test
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Testing significance / goodness-of-fit

Suppose hypothesis A predicts pdf f(x|H) for a set of

observations x = (x,...x,,).

We observe a single point in this space: x.

How can we quantify the level of compatibility between the data

and the predictions of H?

Decide what part of

the data space represents
equal or less compatibility
with H than does the
point x,,.. (Not unique!)
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w.={x:Xx “more
compatible” with H }

.= {x:x“less
or eq. compatible”
with H }
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p-values

Express level of compatibility between data and hypothesis
(sometimes ‘goodness-of-fit’) by giving the p-value for H:

P = P(x € w(Xobs) | H)

probability, under assumption of H, to observe data
with equal or lesser compatibility with H relative to the
data we got.

probability, under assumption of H, to observe data as
discrepant with H as the data we got or more so.

Basic idea: if there is only a very small probability to find data
with even worse (or equal) compatibility, then H is “disfavoured by

the data”.

If the p-value is below a user-defined threshold a (e.g. 0.05) then H
is rejected (equivalent to hypothesis test as discussed previously).
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A\ p-value of His not P(H)

The p-value of H is not the probability that A is true!

In frequentist statistics we don’t talk about P(H) (unless H
represents a repeatable observation).

If we do define P(H), e.g., in Bayesian statistics as a degree of
belief, then we need to use Bayes’ theorem to obtain

P(Z|H)m(H)

PUHIZ) = [ P(Z|H)=(H) dH

where 7(H) is the prior probability for H.

For now stick with the frequentist approach;
result is p-value, regrettably easy to misinterpret as P(H).
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Compatibility with A

What does it mean for a region of data space to be less
compatible with the predictions of H?

It must mean that that region of data space is more
compatible with some relevant alternative H'.

So although the definition of the p-value does not need to
refer explicitly to an alternative, this enters implicitly through
its role in determining the partitioning of the data space into
more and less-or-equally compatible regions.

As in the case of hypothesis tests, there may be more than
one relevant alternative.
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Example of p-value: exponential decay time

A nuclear sample contains two radioactive isotopes with mean lifetimest=0.2 s
andzt=1.0s.

e | L o
For either isotope we expect the decay time to follow f(t|7) = —e¢

-
A nucleus is observed to decay after atime ¢, =0.6s.

The p-value of the hypothesis A that the

nucleus is of the type with7=0.2s is — H:71=02s

— H' : 1T=1.0s

pg = P(t > tops|7 = 0.28) = 0.0498
tobs =0.6 s

Here we take ¢ > ¢,  as being less compatible
with 7=10.2 s, because greater ¢ is more

characteristicof 7=1.0s.

—_
~

)

=

2 py = 0.0498

If the relevant alternative had been 7=10.1s, 1-
then one would define the p-value as

0 . . .
pi = P(t <tops|r =028)=0.9502 00 05 10 15 20
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p-value from test statistic

w-={x:x “more
compatible” with H }

/ surface described by test statistic

t(X) — t(xobs) = Tobs

.= {x:x "“less
or eq. compatible”
with H }

If e.g. we define the region of less or eq. compatibility to be #(x) > ¢, then
the p-value of H is

pﬂzfoo f(t\H)dt:/ f(x|H) dx

tobs {X . t(x)ztobs}

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 6



Distribution of the p-value

The p-value is a function of the data, and is thus itself a random
variable with a given distribution. Suppose the p-value of H is
found from a test statistic #(x) as

PH = / S|t
t
The pdf of p,; under assumption of H is

_ fH)  f@H) .
~ |Opm/ot|  f(t|H) =1 (0<pw<1)

H
In general for continuous data, under \g(pH )

g(pu|H)

assumption of H, p, ~ Uniform[0,1]
and is concentrated toward zero for \
some (broad) class of alternatives. » 1
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Using a p-value to define test of H,
So the probability to find the p-value of H,, p,, less than a is

g(folH4a),

7

P(po < alHp) = « // A
|

P
ol \

We started by defining critical region in the original data space (x),
then reformulated this in terms of a scalar test statistic #(x).

We can take this one step further and define the critical region
of a test of H,, with size a as the set of data space where p,<a .

Formally the p-value relates only to H,,, but the resulting test will
have a given power with respect to a given alternative H,, and the
test statistic #(x) used to obtain the p-value can be designed to
achieve this, e.g., a likelihood ratio #(x) = P(x|H,)/P(x|H,).
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Statistical Data Analysis
Lecture 6-2

e More examples of p-values
— Coin
— Poisson counting experiment

e Equivalent Gaussian significance
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p-value example: testing whether a coin is ‘fair

Probability to observe n heads in N coin tosses is binomial:

P(nip.N) = s (1= )

Hypothesis H: the coin is fair (p = 0.5).
Suppose we toss the coin N =20 times and get n = 17 heads.

Region of data space with equal or lesser compatibility with
Hrelativeton=17is: n=17, 18, 19, 20,0, 1, 2, 3. Adding
up the probabilities for these values gives:

P(n=0,1,2,3,17,18,19, or 20) = 0.0026 .

i.e. p =0.0026 is the probability of obtaining such a bizarre
result (or more so) ‘by chance’, under the assumption of H.
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p-value example for coin (2)

Note that the region of equal or lesser compatibility seems
“obvious” but could be different.

For example, suppose the person tossing the coin works for the
“Mostly-Heads-Trick-Coin Company”, then maybe
w. = {17,18,19,20}, and p,;. = 0.0013.

Note as well the clear distinction between the p-value of a fair
coin and the probability (degree of belief) that the coin is fair:

Suppose you get the coin as change at a cafe. You then flip the
coin 20 times and get 17 heads:

p-Va|UEpfair = 00026,
P(fair) = probably still close to 1, depending on prior z(fair).

Suppose a representative of the MHTC Co. proposes a betting
game in which they win money from you if there is an excess of
heads. The result is 17 heads out of 20. P(fair) = low.
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The Poisson counting experiment

Suppose we do a counting experiment and observe n events.

Events could be from signal process or from background —
we only count the total number.

Poisson model:

P(nls,b) = E (o4

n!

s = mean (i.e., expected) # of signal events
b = mean # of background events
Goal is to make inference about s, e.g.,
test s = 0 (rejecting H, = “discovery of signal process”)
test all non-zero s (values not rejected = confidence interval)

In both cases need to ask what is relevant alternative hypothesis.
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Poisson counting experiment: discovery p-value
Suppose b = 0.5 (known), and we observe n_,, = 5.

Should we claim evidence for a new discovery?

Give p-value for hypothesis s = 0:

p-value = P(n>5;b=0.5,s=0)
= 1.7 x 107% # P(s = 0)!
&
O 06}
o
04
5 Prob(n=5)
=17x10"
02
0 . I 1 1
0 1 2 3 4 5 6 7 8 9
) 0 "
(n)=05 Nyps = O
G. Cowan / RHUL Physics
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Significance from p-value

Often define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.

o

& ]. _mZ/Q
p=] Vol (2)

= x (1-p)
in ROOT: in python (scipy.stats):
p = 1 - TMath: :Freq(Z) pPp =1 - norm.cdf(Z) = norm.sf (2)
Z = TMath: :NormQuantile (l-p) Z = norm.ppf (1-p)

Result Zis a “number of sigmas”. Note this does not mean that
the original data was Gaussian distributed.
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Poisson counting experiment: discovery significance
Equivalent significance forp=1.7 X 10 Z = <I’_1(1 —p) =3.6

Often claim discovery if Z>5 (p <2.9 X 107, i.e., a “5-sigma effect”)

S ° In fact this tradition should be
§ """"""" N revisited: p-value intended to
sS4 quantify probability of a signal-
7y :

like fluctuation assuming
background only; not intended
to cover, e.g., hidden
systematics, plausibility signal
model, compatibility of data with
signal, “look-elsewhere effect”

8 -6 -4 2 . .
10 10 10 10 1 (~multiple testing), etc.
p-value

- p=29x107

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 6 17



Statistical Data Analysis
Lecture 6-3

e Test based on histogram

e Pearson’s chi-squared

G. Cowan / RHUL Physics
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Test using histogram of data

Suppose the data are a histogram n = (n,,...,n,) of values and a
hypothesis predicts mean values v = E[n] = (v,...,Vy).
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Modeling the data

Consider e.g. the following hypotheses:

independent, treat as continuous n; ~ Gauss(v, ;)

'—Vi)Q/QO'?

paly) = H \/%Z

independent n; ~ Poisson(v,-)

P(n|v) =

n ~ Multinomial(n,, p), n=2;n, p=v/ng

171

Tt t!
Plnlv) = M pi g
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Pearson’s y? statistic
We can take as the test statistic
Vz)2

(Pearson’s y?

, Where az-Q = Vin;] . oo
statistic)

Z (n; —

1=1 i

x*> = sum of squares of the deviations of the ith measurement
from the ith predicted mean, using o; as the ‘yardstick’ for the
comparison.

X2 > 1% defines the region of “equal or lesser compatibility” for
purposes of computing a p-value.

/ fx
ot \
need this pdf
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Distribution of Pearson’s y? statistic

If n; ~ Gauss(v; , 6.?), then Pearson’s y* will follow the chi-square
pdf (here write y* = z) for N degrees of freedom:

CATY 1 N/2—1 _—2z/2
LGN = oNprivy”

For proof using characteristic functions (Fourier transforms) see
e.g. SDA Sec. 10.2.

N ’I’L?;—I/?:2
$h (mi = v)?

If the n;, ~Poisson(v;) then V[n;] = v; and so x> = »
]

i=1
If v, >>1 (in practice OK for v; > half dozen) then the Poisson dist.
becomes Gaussian (see SDA Sec. 10.2) and therefore Pearson’s y?
statistic here as well follows the chi-square pdf.

This is called the “large-sample” or “asymptotic” limit.
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Pearson’s y* with multinomial data

If n,,= X" n; is fixed, then we can model the histogram using

l l

n ~ Multinomial(p, n,,,) with p,=v,/ n,.

In this case we can take Pearson’s y? statistic to be

N
> (n; — pintot)?
X~ =)

Note here the denominator is not the variance V[n;] = n,, p; (1-p,),
and also since the n; ~ multinomial they are not independent.

But with this definition, if all p,n,,,>> 1 (the “large sample limit”)
one can show the statistic will follow the chi-square pdf for N—1

degrees of freedom.
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Example of a y* test

Suppose we have the data below (solid) and prediction (dashed)
of a “background” hypothesis, model n; ~Poisson(v;).

10

Nix)

— data
B L - - =

expected background

<« This gives

N 02

X2 _ Z (nj —v;) _ 298
i=1 Vi

for N =20 dof.

Now need to find p-value, but... many bins have few (or no)
entries, so here we do not expect y? to follow the chi-square pdf.

G. Cowan / RHUL Physics

Statistical Data Analysis / lecture week 6 24



Using MC to find distribution of y? statistic

If the distribution of the y? statistic is not expected to be well
approximated by the asymptotic chi-square distribution, we can
still use it but need some other way to find its pdf.

To find its sampling distribution, simulate the data with a

Monte Carlo program, i.e., generate n; ~Poisson(v;) fori=1,...,N

0.1 T T T T T

Here data sample simulated 10° — chi-square pdf for N =20

times. The fraction of times we
find y> > 29.8 gives the p-value: 006 |

p=011 004

0.08

—-—- pdf from Monte Carlo

—> P-alue

If we had used the chi-square pdf 002 |
we would find p = 0.073.

i

el

30 40 50
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The “¥2 per degree of freedom’

Recall that for the chi-square pdf for N degrees of freedom,
Flz] =N, V][z]=2N.

This makes sense: if the hypothesized v, are right, the rms

deviation of n, from v, is g, so each term in the sum contributes ~1.

One often sees y?/N reported as a measure of goodness-of-fit.
But... better to give y*>and N separately. Consider, e.g.,

x2 = 15, N=10 — p—value=0.13,

x* = 150, N =100 — p—value=19.0 x 10™%.

i.e. for N large, even a y? per dof only a bit greater than one can
imply a small p-value, i.e., poor goodness-of-fit.
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Statistical Data Analysis
Lecture 6-4

e |ntroduction to (frequentist) parameter estimation
e The method of Maximum Likelihood

e MLE for exponential distribution
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Parameter estimation

The parameters of a pdf are any constants that characterize it,

_* —9:/6’
flx;0) = ¢ i.e., Oindexes a

/ \ set of hypotheses.

rv parameter

Suppose we have a sample of observed values: x = (x, ..., x,,)

We want to find some function of the data to estimate the
parameter(s):

0(x) < estimator written with a hat

Sometimes we say ‘estimator’ for the function of x,, ..., x,;

nd

‘estimate’ for the value of the estimator with a particular data set.

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 6
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Properties of estimators

If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

q(8;0)

best
\

large
variance

We want small (or zero) bias (systematic error): b= E[0] — 6

— average of repeated measurements should tend to true value.

And we want a small variance (statistical error): V[6]

— small bias & variance are in general conflicting criteria

G. Cowan / RHUL Physics
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An estimator for the mean (expectation value)

=

Parameter: u = Elx] = (z) = / rf(x)dx

— i3

Suppose we have a sample of n independent values x,,....x,,.

(‘sample mean’)

Estimator: Z T,

We find: b= E[fi] —u =0

0'2 o
w2 ()
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An estimator for the variance

Parameter: ¢% = V[z] = f (z — p)*f(z)de

— O

—~

Estimator: o2 =

Z (z; —T)2 =352 (‘sample

n—1, variance’)

We find:
b — E[;\Q] — g2 =0 (factor of n-1 makes this so)

3 1 n—3
V[a2]:£(u4—n_1

N2> ,  Where

pe= [ (@ wFf(@) deo
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The likelihood function

Suppose the entire result of an experiment (set of measurements)
is a collection of numbers x, and suppose the joint pdf for
the data x is a function that depends on a set of parameters 6:

P(x|6)

Now evaluate this function with the data obtained and
regard it as a function of the parameter(s). This is the
likelihood function:

L(6) = P(x|0) (x constant)
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The likelihood function fori.i.d.*. data

*i.i.d. =independent and identically distributed

Consider n independent observations of x: x,, ..., x,, where
x follows f(x; 8). The joint pdf for the whole data sample is:

1=1

In this case the likelihood function is

L(O) = I] f(xi;0) (x; constant)
i=1
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Maximum Likelihood Estimators (MLEs)

We define the maximum likelihood estimators or MLEs to be
the parameter values for which the likelihood is maximum.

/

Maximizing L equivalent
to maximizing log L

I L

Could have multiple maxima (take highest).

MLEs not guaranteed to have any ‘optimal’ properties, (but
in practice they’re very good).
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MLE example: parameter of exponential pdf

Consider exponential pdf,  f(¢;7) = le—t/’r
-

and suppose we have i.i.d. data, tq1,...,tn

The value of 7 for which L(r) is maximum also gives the
maximum value of its logarithm (the log-likelihood function):

InL(7) = i In f(t;;7) = ﬁ: (Inl — E)
i=1

i—=1 T T
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MLE example: parameter of exponential pdf (2)

Find its maximum by setting an = Z (—— —) 0

n
Zt@ 1

1=1

f®

075
Monte Carlo test:

generate 50 values

05
usingt=1:
025
We find the ML estimate:
o (LRIIACARLALED 1 1
+=1.062 0 1 2 3 4 5

{
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MLE example: parameter of exponential pdf (3)

For the exponential distribution one has for mean, variance:

Elt] :/ tlet/mar =7
0 T

= 1
Vit] = / (t—7)2 e /7 dt =72
0 T

1 ('
Forthe MLE 7= =) t; we therefore find
ni:l

'1 T 7] 1 e
E[f]=E =) ti|==)Y E[tj=7 —> b=E[f]-7=0

. 1 «— T2 T
Vi =V HZL}- _EEV[Q]_E — o=
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Software for Machine Learning

We will practice ML with the Python package scikit-learn
scikit-learn.org <« software, docs, example code

scikit-learn built on NumPy, SciPy and matplotlib, so you need

import scipy as sp

Import numpy as np

import matplotlib

import matplotlib.pyplot as plt

and then you import the needed classifier(s), e.g.,

from sklearn.neural_network import MLPClassifier

For a list of the various classifiers in scikit-learn see the docs
on scikit-learn.org, also a very useful sample program:

http://scikit-
learn.org/stable/auto examples/classification/

plot classifier comparison.html
G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 6
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Example: the data

We will do an example with data corresponding to events
of two types: signal (y = 1, blue) and background (y = 0, red).

0.6 1 0.7
0.5 0.6
0.4 0.5
= %04
=03 3
0.3
0.2 02
0.1 0.1
0.0 T = > 0 > a 0.0 _'3 _|2 _I1 0 1 2'_‘_‘ 3 4
4.0 1 . .
35 Each event is characterised by 3
2‘5’ quantities: x = (x, x5, X3).
2201 Components are correlated.
1.5
o] Suppose we have 1000 events
0.51 .
oollnn it 7 each of signal and background.
0.0 0.2 0.4 0.6 0.8 1.0

X . .
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Reading in the data

scikit-learn wants the data in the form of numpy arrays:

# read the data in from files,

# assign target values 1 for signal, O for background
sigData = np.loadtxt('signal.txt')

nSig = sigData.shape[0]

sigTargets = np.ones(nSig)

bkgData = np.loadtxt('background.txt’)

nBkg = bkgData.shape|[0]

bkgTargets = np.zeros(nBkg)

# concatenate arrays into data X and targets y

# split into two parts: use one for training, the other for testing
X = np.concatenate((sigData,bkgData),0)

y = np.concatenate((sigTargets, bkgTargets))

# split data into training and testing samples
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5,
random_state=1)
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Create, train, evaluate the classifier

Create an instance of the MLP (multilayer perceptron) class
and “train”, i.e., adjust the values of the weights to minimise
the loss function.

Here we request 3 hidden layers with 10 nodes each:

# create classifier object and train

clf = MLPClassifier(hidden_layer_sizes=(10,10,10), activation="tanh’,
max_iter=2000, random_state=6)

clf.fit(X_train, y_train)

Use test data to see what fraction of events are correctly classified
(default takes threshold of 0.5 for decision function)

# evaluate its accuracy (= 1 — error rate) using the test data
y_pred = clf.predict(X_test)
print(metrics.accuracy_score(y_test, y pred))

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 6

42



Evaluating the decision function

So now for any point (x4, x, x3) in the feature space,
we can evaluate the decision:

# Test evaluation of decision function for a specific point in feature space
xt = np.array([0.37, 2.46, 0.42]).reshape((1,-1))

#t = clf.decision_function(xt)[0] # not available for MLP

t = clf.predict_proba(xt)[0, 1] # for MLP use this instead

Usually we have an array of points in x-space, so we can
get an array of probabilities:

t = clf.predict_proba(X_test)[:, 1] # returns prob to be of type y=1

Can get this separately for the signal and background events
and make histograms (see sample code).

Note for most other classifiers, the decision function is called
decision_function — use this instead of predict_proba.
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On defining a p-value

Earlier it was argued that the region of “equal or lesser compatibility” with H
had greater compatibility with the predictions of some alternative hypothesis.

But shouldn’t it be possible to identify such a region by using the pdf f(x| H)?

In general, no.

Consider cubic crystal grains 7]
produced by a manufacturing
process H that resultsin an
edge length distribution

fle|H)=2z, 0<x<1

f(x)

Observe grain of uncertain origin,
measure x, find p-value of hypothesis
that it was made by process H.

0 : : : :
0.0 0.2 0.4 0.6 0.8 1.0

X

If we observe a value x,,, naively we could regard x < x_, . as constituting equal
or less agreement with the predictions of f(x|H).
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On defining a p-value (2)

But suppose we took the volume v = x3 of the cube to represent its size.
The volume distribution is

3
(0| H) = f(a(o)|H) |
I - dv .
— gfv_l/3 %
3 N
0<ov <1
0

00 02 04 06 08 1.0
|74

So now it appears that smaller sizes are more compatible with H.

Conclusion: deciding what region of data space constitutes greater or lesser
compatibility with H cannot be done by looking at the data distribution alone;
it requires that one consider an alternative H'.
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nature International weekly journal of science

Home | News & Comment | Research | Careers & Jobs | Current Issue | Archive | Audio & Video | For A

Volume 519 Issue 7541 Research Highlights: Social Selection m

Psychology journal bans P values

Test for reliability of results ‘too easy to pass’, say editors.

Chris Woolston

26 February 2015 | Clarified: 09 March 2015
] poF | W, Rights & Permissions

A controversial statistical test has finally met its end, at least in one journal. Earlier this month, the
editors of Basic and Applied Social Psychology (BASP) announced that the journal would no
longer publish papers containing P values because the statistics were too often used to support
lower-quality research 1.
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