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Statistical Data Analysis
Lecture 8-1

• Basic idea of curve fitting

• The method of Least Squares (LS)

• LS from maximum likelihood

• LS with correlated measurements
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Curve fitting: basic idea

Consider N independent 
measured values yi, i = 1,.., N.

Each yi has a standard deviation 
σi, and is measured at a value xi 
of a control variable x known 
with negligible uncertainty:

The goal is to find a curve μ(x; θ) that passes “close to” the data 
points.

Suppose the functional form of μ(x; θ) is given; goal is to estimate 
its parameters θ  (= “curve fitting”).

yi ± σi

μ(x; θ)
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Minimising the residuals
If a measured value yi has a small σi, we want it to be
closer to the curve, i.e., measure the distance from point to
curve in units of σi:

standardized residual of ith point  = 

Idea of the method of Least Squares is to choose the parameters
that give the minimum of the sum of squared standardized 
residuals, i.e., we should minimize the “chi-squared”:
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Least squares estimators
The values that minimize χ2(θ) define the least-squares 
estimators for the parameters, e.g., here assuming
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Gaussian likelihood function → LS estimators
Suppose the measurements y1, ..., yN, are independent Gaussian 
r.v.s with means E[yi] = μ(xi; θ) and variances V[yi] = σi2 , so the 
the likelihood function is

The log-likelihood function is therefore

So maximizing the likelihood is equivalent to minimizing

The minimum of χ 
2(θ) defines the least squares (LS) estimators θ.^ 
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ML ↔ LS

So least-squares (LS) estimators same as maximum likelihood 
(ML) when the measurements are  yi ~ Gauss(μ(xi; θ), σi).

Note that the yi here are independent but not identically 
distributed.  Do not confuse this case with our previous 
example of an i.i.d. sample with xi ~ Gauss(μ, σ).  

If the yi are not Gaussian distributed the minimum of χ 
2(θ) 

still defines the LS estimators.  But for most applications in 
practice the yi are at least approximately Gaussian (a 
consequence of the Central Limit Theorem).

Often minimize χ2(θ), numerically (e.g. programs like curve_fit 
or MINUIT).



8G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 8

History
Least Squares fitting also called “regression” 

F. Galton, Regression towards mediocrity in hereditary 
stature, The Journal of the Anthropological Institute of Great 
Britain and Ireland. 15: 246–263 (1886).

Developed earlier by Laplace and Gauss:

C.F. Gauss, Theoria Motus Corporum Coelestium in Sectionibus
Conicis Solem Ambentium, Hamburgi Sumtibus Frid. Perthes et 
H. Besser Liber II, Sectio II (1809);
C.F. Gauss, Theoria Combinationis Observationum Erroribus
Minimis Obnoxiae, pars prior (15.2.1821) et pars posterior
(2.2.1823), Commentationes Societatis Regiae Scientiarium
Gottingensis Recectiores Vol. V (MDCCCXXIII).
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LS with correlated measurements
If y ~ multivariate Gaussian with covariance matrix Vij = cov[yi,yj]

where μT = (μ(x1),...,μ(xN)), then maximizing the likelihood is 
equivalent to minimizing
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LS with correlated measurements (2)
For the special case of a diagonal covariance matrix, i.e., 
uncorrelated measurements.  Then

→

V 
-1
ij = δij /σi2, carry out one of the sums, χ2(θ) same as before:
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Statistical Data Analysis
Lecture 8-2

• Finding the LS esgmators

• The linear Least Squares problem

• Bias and variance of LS esgmators
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Recap of Least Squares

Measurements, y1, ..., yN
Standard deviations σ1, ..., σN
 or Vij = cov[yi, yj]

Control variable x1, ..., xN
Fit function μ(xi; θ) = E[yi]

yi ± σi

μ(x; θ)

Esgmate θ by minimizing

or 
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Finding estimators in closed form
For a limited class of problem it is possible to find the LS estimators 
in closed form.  An important example is when the function μ(x; θ) 
is linear in the parameters θ , e.g., a polynomial of order M (note
the function does not have to be linear in x):

As an example consider a straight line (two parameters):

We need to minimize:
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Finding estimators in closed form (2)

Set the derivatives of χ2(θ) with respect to the parameters equal
to zero:
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Finding estimators in closed form (3)

The equations can be rewritten in matrix form as

which has the general form

Read off a, b, c, d,
e, f, by comparing
with eq. above.
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Finding esNmators in closed form (4)

Recall inverse of a 2×2 matrix:

Apply A-1 to both sides of previous eq. to find the estimators:

Note estimators are linear 
functions of the measured yi.
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Linear LS Problem
Suppose the fit funcgon is linear in the parameters θT = (θ1,..., θΜ),

where the ai(x) are a set of linearly independent basis functions,
and write μT(θ) = (μ(x1; θ),..., μ(xN; θ)) .

Define N⨉M matrix Aij = aj(xi), so μ(θ) = Aθ. 

To find the LS estimators minimize:
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Linear LS Problem (2)
Set derivatives with respect to θi to zero, 

Solve system of M linear equagons to find the LS esgmators,

Note that the estimators are linear functions of the measured yi.
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Bias of LS estimators
By hypothesis E[y] = μ = Aθ so for the linear problem, the LS 
estimators are unbiased:

For the general nonlinear problem the LS estimators can have
a bias.
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Variance of LS estimators for linear problem
For the linear LS problem, the variance can be found using
error propagation.  Using

We find

Since the estimators are linear in the yi, error propagation 
gives an exact result.
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Variance of LS estimators for Gaussian data

If yi ~ Gauss, then we found 

To the extent this (approximately) holds, we can use

and so we estimate the inverse covariance matrix with

and invert to estimate the covariance matrix U.  

For Gaussian data with the linear LS problem, U is the minimum 
variance bound (the LS estimators are unbiased and efficient).
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Covariance from derivatives of χ2(θ)
This is what programs like curve_fit and MINUIT do (derivatives 
computed numerically).  Example with straight-line fit gives:

,       
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The contour χ 2(θ) = χ 2
min + 1

If μ(x; θ) is linear in the parameters, then χ2(θ) is quadratic:

Standard deviations from 
tangents to (hyper-) planes of

(corresponds to 
lnL(θ) = lnLmax – ½)



24G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 8

Statistical Data Analysis
Lecture 8-3

• Goodness of fit from χ 2
min 

• Example of least-squares fit
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A “good” fit
In an earlier example we fitted data that were reasonably well 
described by a straight line:
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A “bad” fit
But what if a straight-line fit looks like this:

Test hypothesized form of fit function with p-value, if this is 
below some (user-defined) threshold, reject the hypothesis and 
try some other function, e.g. a polynomial of higher order.
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Goodness-of-fit from χ 2min 
The value of the χ2 at its minimum is a measure of the level
of agreement between the data and fiked curve:

It can therefore be used as a goodness-of-fit statistic t(y) to
test the hypothesized functional form μ(x; θ).

The p-value of the hypothesized functional form is

= the probability, under assumption of μ(x; θ), 
to get a χ2

min as high as the one we got or higher.
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One can show that if the data follow y ~ Gauss(μ(x; θ),σ), i.e., if 
the fit function is correct for some θ, then the statistic t = χ2

min 
follows the chi-square pdf,

where the number of degrees of freedom is 

       nd = number of data points - number of fitted parameters

Distribu;on of χ 2min 

Note that the composite hypothesis with E[y] = μ(x; θ) is only 
fully specified when we fix θ.

So the p-value is in principle a function of θ, and we should only 
reject μ(x; θ) if p ≤ α for all θ.

But here the pdf of our statistic χ2
min is independent of θ, so 

whatever we get for p holds for any θ.
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The “chi-square per degree of freedom”
Recall also the chi-square pdf has an expectation value equal to 
the number of degrees of freedom, so

χ2
min  ~  nd  →  fit is “good”

χ2
min ≫ nd  →  fit is “bad”

χ2
min ≪ nd  →  fit is better than what one would expect given

          fluctuations that should be present in the data.

Often this is done using the ratio χ2
min/nd, i.e. fit is good if 

the “chi-square per degree of freedom” comes out not much
greater than 1.

But, best to quote both χ2
min and nd, not just their ratio, since e.g.

 χ2
min = 15, nd = 10 → p-value = 0.13

 χ2
min = 150 nd = 100 → p-value = 0.00090
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p-value for the “good” fit

If the straight-line hypothesis is true, expect equal or worse 
agreement almost 1/3 of the time (i.e. our result is not unusual).

χ2
min = 8.2

p-value 
= 0.32

N = 9 data points,  m = 2 fitted parameters, 
χ2

min /ndof = 8.2/7 = 1.2
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p-value for the “bad” fit
N = 9 data points,  m = 2 fitted parameters, 
χ2

min /ndof = 20.9/7 = 3.0

So is the straight-line hypothesis correct?  It could be, but if
so we would expect a χ2

min as high as observed or higher
only 4 times out of a thousand.  

χ2
min = 20.9

p-value 
= 0.0039
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A better fit
If we decide the agreement between data and hypothesis is
not good enough (exact threshold is a subjective choice), we can 
try a different model, e.g., a 2nd order polynomial:

χ2
min = 3.5 for ndof = 6

χ2
min /ndof = 0.58

p-value = 0.75
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Goodness-of-fit vs. sta;s;cal errors
If the fit is “bad”, something is “wrong” and you may expect large statistical errors 
for the fitted parameters (std. devs. of estimators).  This is not the case.

The statistical errors say how much the parameter estimates should fluctuate 
when repeating the experiment.  This is not the same as the degree  to which the 
fit function can describe the data.

If the hypothesized μ(x; θ) is not correct, the fitted parameters will have some 
systematic uncertainty – a more complex question that we will take up later.
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Statistical Data Analysis
Lecture 8-4

• Example of a least-squares fit

• Least squares to combine measurements
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Ball and ramp 
data from Galileo

Galileo Galilei, Manuscript f.116, 
Biblioteca Nazionale Centrale di Firenze,
www.bncf.firenze.sbn.it

In 1608 Galileo carried out
experiments rolling a ball
down an inclined ramp to
investigate the trajectory of 
falling objects.
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Ball and ramp data from Galileo

Units in punti 
(approx. 1 mm)

Suppose h is set with negligible uncertainty, and
d is measured with an uncertainty σ = 15 punti.
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Analysis of ball and ramp data
What is the correct law that relates d and h?

Try different hypotheses:
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Summary of ball-and-ramp analysis

Clearly the best fit suggests d ~ h½, and this is exactly what 
Newton’s laws predict! 
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Using LS to combine measurements

= E[yi] for all i
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Combining correlated measurements with LS
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Example: averaging two correlated measurements



45G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 8

Negative weights in LS average
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Extra slides
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Finding LS estimators numerically
Start at a given point in the parameter space and move around 
according to some strategy to find the point where χ2(θ) is a 
minimum.  

For example, alternate 
minimizing with respect 
to each component of θ:

Siegmund Brandt, Data Analysis: Statistical and Computational 
Methods for Scientists and Engineers 4th ed., Springer 2014

starting point
minimum

θi

θj

Many strategies possible,
e.g., steepest descent,
conjugate gradients, ...
(see Brandt Ch. 10).
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Simple Least Squares fits
A simple way to do least squares curve fitting is with the python 
routine curve_fit.

For an introduction to this see the the materials from RHUL's year-
3 introduction to statistics.

This includes a short program simpleFit.py for doing least-squares 
fits; also a root/C++ version simpleFit.C.

http://www.pp.rhul.ac.uk/~cowan/ph3010/statistics/2020/
http://www.pp.rhul.ac.uk/~cowan/ph3010/statistics/2020/ph3010_stat.pdf
http://www.pp.rhul.ac.uk/~cowan/ph3010/statistics/2020/simpleFit.py
http://www.pp.rhul.ac.uk/~cowan/stat/root/simpleFit/simpleFit.C
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Fitting the parameters with Python
The rougne rou$ne curve_fit from scipy.op5mize can 
find LS esgmators numerically.   To use it you need:

We need to define the fit function μ (x; θ), e.g., a straight line:
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The data values (xi, yi, σi) need to be in the form of NumPy
arrays, e.g,

Start values of the parameters can be specified: 

To find the parameter values that minimize χ2(θ), call curve_fit:

Returns esgmators and covariance matrix as NumPy arrays.

Need absolute_sigma=True for the fit errors (cov. matrix) to have
desired interpretagon.

Fitting the parameters with Python (2)
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Brief intro to multiple regression
Multiple regression* can be seen as an 
extension of curve fitting to the case where 
the variable x is replaced by a multi-
dimensional x = (x1,...,xn), e.g., fitting a 
surface.  Here suppose the data are points 
(xi, yi), i = 1,...,N (no error bars) and x is 
usually a random variable, often called the 
explanatory or predictor variable.

http://www-bcf.usc.edu/~gareth/ISL/ 

Equivalently, we can view it as an extension to classificagon with
the discrete class label y = 0, 1 replaced by a congnuous target y 
(and in this context x can also be called the feature vector).

*Note the term ”multivariate” regression refers to a vector 
target variable y; here we treat only scalar y.
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Target (fit) function and loss function
As in the case of curve fitting, we assume some parametric function
of x that represents the mean of the target variable

where w is a vector of adjustable parameters (“weights”).

Suppose we have training data consisgng of (xi, yi), i = 1,...,N.

Use these to determine the weights by minimizing a loss funcgon
(analogous to the χ2), e.g.,
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Linear regression
In linear regression, the fit function 
is of the form

i.e. the problem is equivalent to an 
unweighted least-squares fit of a 
(hyper-)plane:

https://www.statlearning.com/

Can be generalized to a nonlinear surface in x-space by transforming 
x to a set of basis funcgons φ1(x),...,φm(x)

(still linear in the weights)
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Nonlinear regression
Examples of nonlinear regression include:

 MLP (multilayer perceptron) regression

 Boosted decision tree regression

 Support vector regression

For MLP regression, as with classification, regard the feature vector 
as the layer k = 0; i.e., φi(0) = xi.

The ith node of hidden layer k is

where h is the activation function (tanh, relu, sigmoid,...).
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MLP Regression (cont.)
For the final layer (k=K), in MLP regression (in contrast to 
classification), one omits the activation function, i.e.,

where φj(K−1) = are the nodes of the last hidden layer (k = K−1).

For info on other types of multiple regression see, e.g., 

https://www.statlearning.com/

and the scikit-learn documentation.
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Multiple regression example
Suppose particles with different energies E and angles θ (or 
equivalently η = − ln tan(θ/2) ) enter a calorimeter and create a 
particle showers that gives signals in three layers, s1, s2 and s3, 
as well as an estimate of η.

Some of the energy leaks through, with increased leakage for 
higher energy and more oblique angles (higher η).

The goal is to estimate the target yi = Ei given feature vectors 
xi = (η, s1, s2,s3)i for i = 1,...,N training events.
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Energy estimate from sum of signals

Naively, one could try just summing the signals:

Gives very poor resolution
because the particles have a
distribution of energies and
angles and hence differing 
amounts of the energy leak 
through undetected.
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Linear regression
See MVRegressor.py, here using

regr = linear_model.LinearRegression()
regr.fit(X_train, y_train)

Average relative resolution 16.7%.
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MLP Regression
regr = MLPRegressor(hidden_layer_sizes=(10,20,20,10), activation='relu'
regr.fit(X_train, y_train)

Beker resolugon (10%), here significant bias at low energies.
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Refinements for multiple regression

One can try many improvements:

Scaling of predictor and target variables, e.g., standardize to zero 
mean and unit variance.

Use cross-validation to assess accuracy (and hence use entire sample 
of events for training.

Try different loss functions.

Try different regression algorithms (ridge regression, lasso, decision 
tree, support vector regression,...).

Some simple code using scikit-learn and a short project description 
can be found here:

https://www.pp.rhul.ac.uk/~cowan/ph3010/ml/regression/
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Parameter estimation with constraints
When estimating parameters θ = (θ1,..., θM) one may have 
additional information available in the form of K constraints

In some problems it may be possible to define L = M − K new 
parameters η1,..., ηL such that every point in η-space satisfies 
the constraints.  If so, estimate η e.g. with Maximum Likelihood 
or Least Squares and then transform back to θ.  But it may be 
difficult to find new parameters with the required properties.  

Suppose the estimators are found by minimizing χ2(θ).   One 
can implement the constraints by minimizing instead the 
Lagrange function

with respect to θ and the Lagrange multipliers λ = (λ1,..., λK).
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Finding constrained esNmators
Define a K+M dimensional vector to contain the parameters and 
Lagrange multipliers

The estimators for γ are found from the solutions to 

This gives the parameter values that minimize χ2(θ) subject to the 
constraints.
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Covariance matrix of estimators
To find the covariance matrix of the esgmators, find the solugons    
     to the equagons above when the data y are equal to their
expected values ⟨y⟩ (in pracgce esgmate with the observed values).  
This gives esgmators

Using this approximation for          , find the covariance matrix
                            using error propagation, i.e.,

where

where

and where ,
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Derivation of formula for covariance

For more details see the PDG review on statistics Sec. 40.2.4 at 
pdg.lbl.gov or the note:
https://www.pp.rhul.ac.uk/~cowan/stat/notes/lscon.pdf
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Example of constrained estimators
Suppose we have measurements y1, y2 and y3 of the three angles 
θ1, θ2, θ3 of a triangle.

Model as independent and Gaussian:  yi ~ Gauss(θi, σ).

To find the estimators, one could replace θ3 = π − θ1 − θ2 and 
minimize χ2(θ1,θ2) .

→

Alternatively, minimize 

Variances of estimates reduced by constraint:


