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Statistical Data Analysis
Lecture 10-1

• Upper limits on a Poisson rate parameter

– Frequentist approach

– Bayesian approach
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Frequentist upper limit on Poisson parameter
Consider again the case of observing n ~ Poisson(s + b).

Suppose b = 4.5, nobs = 5.  Find upper limit on s at 95% CL.

Relevant alternative is s = 0 (critical region at low n)

p-value of hypothesized s is P(n ≤ nobs; s, b)

Upper limit sup at CL = 1 – α found from
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n ~ Poisson(s+b):  frequentist upper limit on s
For low fluctuation of n, formula can give negative result for sup; 
i.e. confidence interval is empty;  all values of s ≥ 0 have ps ≤ α.
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Limits near a boundary of the parameter space
Suppose e.g. b = 2.5 and we observe n = 0.  

If we choose CL = 0.9, we find from the formula for sup

Physicist:  
We already knew s ≥ 0 before we started; can’t use negative 
upper limit to report result of expensive experiment!

Statistician:
The interval is designed to cover the true value only 90%
of the time — this was clearly not one of those times.

Not uncommon dilemma when testing parameter values for which
one has very little experimental sensitivity, e.g., very small s.
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Expected limit for s = 0

Physicist:  I should have used CL = 0.95 — then sup = 0.496

Even better:  for CL = 0.917923 we get sup = 10-4 !

Reality check:  with b = 2.5, typical Poisson fluctuation in n is
at least √2.5 = 1.6.  How can the limit be so low?

Look at the mean limit for the 
no-signal hypothesis (s = 0)
(sensitivity).

Distribution of 95% CL limits
with b = 2.5, s = 0.
Mean upper limit = 4.44
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The Bayesian approach to limits
In Bayesian statistics need to start with ‘prior pdf’ π(θ), this 
reflects degree of belief about θ before doing the experiment.

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Integrate posterior pdf p(θ|x) to give interval with any desired
probability content.  

For e.g. n ~ Poisson(s+b), 95% CL upper limit on s from
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Bayesian prior for Poisson parameter

Include knowledge that s ≥ 0 by setting prior π(s) = 0 for s < 0.

Could try to reflect ‘prior ignorance’ with e.g. 

Not normalized; can be OK provided L(s) dies off quickly for large s.

Not invariant under change of parameter — if we had used instead 
a flat prior for a nonlinear function of s, then this would imply a 
non-flat prior for s.

Doesn’t really reflect a reasonable degree of belief, but often used 
as a point of reference; or viewed as a recipe for producing an 
interval whose frequentist properties can be studied (e.g., coverage 
probability, which will depend on true s). 
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Bayesian upper limit with flat prior for s
Put Poisson likelihood and flat prior into Bayes’ theorem:

Normalize to unit area:

Upper limit sup determined by requiring 

upper incomplete
gamma function
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Bayesian interval with flat prior for s
Solve to find limit sup:

For special case b = 0, Bayesian upper limit with flat prior
numerically same as one-sided frequentist case (‘coincidence’). 

where 
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Bayesian interval with flat prior for s
For b > 0 Bayesian limit is everywhere greater than the (one 
sided) frequentist upper limit.

Never goes negative.  Doesn’t depend on b if n = 0.



12G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 10

Statistical Data Analysis
Lecture 10-2

• Discussion on Bayesian prior probabilities

• Jeffreys’ prior

• Example:  Poisson mean
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Priors from formal rules 
Last time we took the prior for a Poisson mean to be constant to 
reflect a lack of prior knowledge; we noted this was not invariant 
under change of parameter.

Because of difficulties in encoding a vague degree of belief
in a prior, one often attempts to derive the prior from formal rules,
e.g., to satisfy certain invariance principles or to provide maximum
information gain for a certain set of measurements.

Often called “objective priors” 
Form basis of Objective Bayesian Statistics

The priors do not reflect a degree of belief (but might represent
possible extreme cases).   

In Objective Bayesian analysis, can use the intervals in a
frequentist way, i.e., regard Bayes’ theorem as a recipe to produce
an interval with a given coverage probability. 
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Priors from formal rules (cont.) 
For a review of priors obtained by formal rules see, e.g.,

Formal priors have not been widely used in Particle Physics, but 
there has been interest in this direction, especially the reference 
priors of Bernardo and Berger; see e.g.

L. Demortier, S. Jain and H. Prosper, Reference priors for high
energy physics, Phys. Rev. D 82 (2010) 034002, arXiv:1002.1111.

D. Casadei, Reference analysis of the signal + background model 
in counting experiments, JINST 7 (2012) 01012; arXiv:1108.4270.
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Jeffreys prior
According to Jeffreys’ rule, take prior according to

where

is the Fisher information matrix.

One can show that this leads to inference that is invariant under
a transformation of parameters in the following sense:

Start with the Jeffreys prior for θ:  πθ(θ) ~ √(det I(θ))

Use it in Bayes’ theorem to find:
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Jeffreys prior (2)

Now consider a function η(θ).  The posterior for η is

Alternatively, start with η and use its Jeffreys’ prior:

Use this in Bayes’ theorem:

One can show that Jeffreys’ prior results in the same P(η|x) in 
both cases.  For details (single-parameter case) see:
http://www.pp.rhul.ac.uk/~cowan/stat/notes/JeffreysInvariance.pdf
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Jeffreys prior for Poisson mean

Suppose n ~ Poisson(μ).  To find the Jeffreys’ prior for μ,

So e.g. for μ = s + b, this means the prior π(s) ~ 1/√(s + b),  which 
depends on b.  But this is not designed as a degree of belief  about s.
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Posterior pdf for Poisson mean
From Bayes’ theorem, 

Flat, π(μ) = const.

Jeffreys, π(μ) ~ 1/√μ

In both cases, posterior is special case of gamma distribution.
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Upper limit for Poisson mean

Flat prior:

Jeffreys prior:

= 7.75

= 7.03

where P-1 is the inverse of the normalized lower incomplete 
gamma function (see scipy.special)

To find upper limit at CL = 1-α, solve

n=3,
CL=0.95
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Statistical Data Analysis
Lecture 10-3

• Systematic uncertainties and nuisance parameters

• Profile likelihood
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Systematic uncertainties and nuisance parameters
In general, our model of the data is not perfect:

x

L(
x|θ

)

model:  

truth:

Can improve model by including 
additional adjustable parameters.

Nuisance parameter ↔ systematic uncertainty. Some point in the
parameter space of the enlarged model should be “true”.  

Presence of nuisance parameter decreases sensitivity of analysis
to the parameter of interest (e.g., increases variance of estimate).



22G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 10

Example:  fitting a straight line

Data:

Model: yi independent and all follow yi ~ Gauss(μ(xi ), σi )

assume xi and σi known.

Goal:  estimate θ0
Here suppose we don’t care 
about θ1 (example of a 
“nuisance parameter”)



23G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 10

Maximum likelihood fit with Gaussian data

In this example, the yi are assumed independent, so the
likelihood function is a product of Gaussians:

Maximizing the likelihood is here equivalent to minimizing

i.e., for Gaussian data, ML same as Method of Least Squares (LS)
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θ1 known a priori

For Gaussian yi, ML same as LS

Minimize χ2 → estimator

Come up one unit from     

to find 
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Correlation between

causes errors

to increase.

Standard deviations from

tangent lines to contour

ML (or LS) fit of θ0 and θ1
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The information on θ1

improves accuracy of

If we have a measurement t1 ~ Gauss (θ1, σt1)
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Profiling
The lnL = lnLmax – ½ contour in the (θ0, θ1) plane is a confidence 
region at CL = 39.3%.

Furthermore if one wants to know only about, say, θ0, then the
interval in θ0  corresponding to lnL = lnLmax – ½ is a confidence 
interval at CL = 68.3% (i.e., ±1 std. dev.).

I.e., form the interval for θ0
using

where θ1 is replaced by its 
“profiled” value
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Profile Likelihood
Suppose we have a likelihood L(μ,θ) = P(x|μ,θ) with  N
parameters of interest μ = (μ1,..., μN) and M nuisance parameters 
θ = (θ1,..., θM).  The “profiled” (or “constrained”) values of θ are:

and the profile likelihood is:

The profile likelihood depends only on the parameters of 
interest; the nuisance parameters are replaced by their profiled 
values.

The profile likelihood can be used to obtain confidence 
intervals/regions for the parameters of interest in the same way 
as one would for all of the parameters from the full likelihood.
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Profile Likelihood Ratio – Wilks theorem
Goal is to test/reject regions of μ space (param. of interest).

Rejecting a point μ should mean pμ ≤ α for all possible values of the 
nuisance parameters θ.

Test μ using the “profile likelihood ratio”:

Let tμ = -2lnλ(μ).  Wilks’ theorem says in large-sample limit:

where the number of degrees of freedom is the number of 
parameters of interest (components of μ).  So p-value for μ is
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Profile Likelihood Ratio – Wilks theorem (2)

The recipe to get confidence regions/intervals for the parameters 
of interest at CL = 1 – α is thus the same as before, simply use the 
profile likelihood:

If we have a large enough data sample to justify use of the
asymptotic chi-square pdf, then if μ is rejected, it is rejected for 
any values of the nuisance parameters.

where the number of degrees of freedom N for the chi-square 
quantile is equal to the number of parameters of interest.

If the large-sample limit is not justified, then use e.g. Monte 
Carlo to get distribution of tμ.
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Statistical Data Analysis
Lecture 10-4

• Bayesian parameter estimation

• Marginalization of posterior pdf

• Markov Chain Monte Carlo
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Reminder of Bayesian approach
In Bayesian statistics we can associate a probability with
a hypothesis, e.g., a parameter value θ.

Interpret probability of θ as ‘degree of belief’ (subjective).

Need to start with ‘prior pdf’ π(θ), this reflects degree 
of belief about θ before doing the experiment.

Our experiment has data x, → likelihood L(x|θ).

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Posterior pdf p(θ|x) contains all our knowledge about θ.
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Bayesian approach:  yi ~ Gauss(μ(xi;θ0,θ1), σi) 
We need to associate prior probabilities with θ0 and θ1, e.g.,

Likelihood for control
measurement t1

← ‘non-informative’, in any
case much broader than L(θ0)

Ur = “primordial”
prior 

← suppose knowledge of θ0 has 
no influence on knowledge of θ1

prior after t1,
before y
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Bayesian example:  yi ~ Gauss(μ(xi;θ0,θ1), σi) 

Putting the ingredients into Bayes’ theorem gives:

posterior    ∝ likelihood         ✕ prior

Note here the likelihood only reflects the measurements y.

The information from the control measurement t1 has been put 
into the prior for θ1.

We would get the same result using the likelihood P(y,t|θ0,θ1) and 
the constant  “Ur-prior” for θ1.
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Marginalizing the posterior pdf

For this example, numbers come out same as in frequentist 
approach, but interpretation different.  

We then integrate (marginalize)  p(θ0,θ1|y) to find p(θ0 |y):

In this example we can do the integral (rare).  We find

(same as for MLE)
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Marginalization with MCMC
Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.  

MCMC (e.g., Metropolis-Hastings algorithm) generates 
correlated sequence of random numbers:

cannot use for many applications, e.g., detector MC;
effective stat. error greater than if all values independent .

Basic idea:  sample multidimensional θ but look only at 
distribution of parameters of interest. 
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MCMC basics:  Metropolis-Hastings algorithm
Goal:  given an n-dimensional pdf p(θ), generate a sequence of 
points θ1, θ2, θ3,... 

1)  Start at some point 

2)  Generate  

Proposal density q(θ; θ0)
e.g. Gaussian centred
about θ0

3)  Form Hastings test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate
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Metropolis-Hastings (continued)
This rule produces a correlated sequence of points (note how 
each new point depends on the previous one).

Still works if p(θ) is known only as a proportionality, which is 
usually what we have from Bayes’ theorem: p(θ|x) ∝ p(x|θ)π(θ).

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation.  Often take proposal
density symmetric:  q(θ; θ0) = q(θ0; θ)

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher p(θ), take it;  
if not, only take the step with probability p(θ)/p(θ0).
If proposed step rejected, repeat the current point.
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Example:  posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:

Normalized histogram of θ0 gives 
its marginal posterior pdf:
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Bayesian method with alternative priors
Suppose we don’t have a previous measurement of θ1 but rather, 
an “expert” says it should be positive and not too much  greater 
than 0.1 or so, i.e., something like

From this we obtain (numerically) the posterior pdf for θ0:

This summarizes all 
knowledge about θ0.

Look also at result from 
variety of  priors.
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Extra slides
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p-values in cases with nuisance parameters
Suppose we have a statistic qθ that we use to test a hypothesized
value of a parameter θ, such that the p-value of θ is

But what values of ν to use for f (qθ|θ, ν)?
Fundamentally we want to reject θ only if pθ < α for all ν.

→ “exact” confidence interval
Recall that for statistics based on the profile likelihood ratio, the 
distribution f (qθ|θ, ν) becomes independent of the nuisance 
parameters in the large-sample limit.
But in general, for finite data samples this is not true; one may be 
unable to reject some θ values if all values of ν must be 
considered, even those strongly disfavoured by the data (resulting 
interval for θ “overcovers”).
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Profile construction (“hybrid resampling”)

Approximate procedure is to reject θ if pθ ≤ α where
the p-value is computed assuming the value of the nuisance
parameter that best fits the data for the specified θ :

“double hat” notation means
value of parameter that maximizes
likelihood for the given θ.

The resulting confidence interval will have the correct coverage
for the points (θ, ˆ̂ν(θ)) .

Elsewhere it may under- or overcover, but this is usually as good
as we can do (check with MC if crucial or small sample problem).
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“Hybrid frequentist-Bayesian”method
Alternatively, suppose uncertainty in ν is characterized by
a Bayesian prior π(ν).

Can use the  marginal likelihood to model the data: 

This does not represent what the data distribution would
be if we “really” repeated the experiment, since then ν would
not change.

But the procedure has the desired effect.  The marginal likelihood
effectively builds the uncertainty due to ν into the model.

Use this now to compute (frequentist) p-values → the model 
being tested is in effect a weighted average of models.


