Statistical Data Analysis 2020/21 Lecture Week 2

London Postgraduate Lectures on Particle Physics
University of London MSc/MSci course PH4515

Glen Cowan
Physics Department
Royal Holloway, University of London
g.cowan@rhul.ac.uk
www.pp.rhul.ac.uk/~cowan

Course web page via RHUL moodle (PH4515) and also www.pp.rhul.ac.uk/~cowan/stat_course.html

Statistical Data Analysis Lecture 2-1

- Functions of random variables
- Single variable, unique inverse
- Function without unique inverse
- Functions of several random variables

Functions of a random variable

A function of a random variable is itself a random variable.

Suppose x follows a $\operatorname{pdf} f(x)$

Consider a function $a(x)$
e.g. $\quad a=x^{2}$

What is the pdf $g(a)$?

Function of a single random variable

General prescription:

$$
g(a) d a=\int_{d S} f(x) d x
$$

$d S=$ region of x space for which a is in $[a, a+d a]$.

For one-variable case with unique inverse this is simply

$$
\begin{aligned}
g(a) d a & =f(x) d x \\
\rightarrow \quad g(a) & =f(x(a))\left|\frac{d x}{d a}\right|
\end{aligned}
$$

Example: function with unique inverse

$$
\begin{aligned}
& f(x)=2 x, 0<x \leq 1 \\
& a=-\ln x \\
& x=e^{-a}, \frac{d x}{d a}=-e^{-a} \\
& g(a)=f(x(a))\left|\frac{d x}{d a}\right|=2 e^{-a} \cdot\left|-e^{-a}\right| \\
& \\
& =2 e^{-2 a} \quad g(a) \\
& 0
\end{aligned}
$$

Functions without unique inverse

If inverse of $a(x)$ not unique, include all $d x$ intervals in $d S$ which correspond to $d a$:

$$
g(a)=\sum_{i} f\left(x_{i}(a)\right)\left|\frac{d x}{d a}\right|_{x_{i}(a)}
$$

Example: $\quad a(x)=x^{2}, \quad x_{1}(a)=-\sqrt{a}, \quad x_{2}(a)=\sqrt{a}, \quad \frac{d x_{1,2}}{d a}=\mp \frac{1}{2 \sqrt{a}}$

$$
\begin{gathered}
d S=\left[x_{1}, x_{1}+d x_{1}\right] \cup\left[x_{2}, x_{2}+d x_{2}\right] \\
g(a)=f\left(x_{1}(a)\right)\left|\frac{d x}{d a}\right|_{x_{1}(a)}+f\left(x_{2}(a)\right)\left|\frac{d x}{d a}\right|_{x_{2}(a)}=\frac{f(-\sqrt{a})}{2 \sqrt{a}}+\frac{f(\sqrt{a})}{2 \sqrt{a}}
\end{gathered}
$$

Change of variable example (cont.)

Suppose the pdf of x is $\quad f(x)=\frac{x+1}{2}, \quad-1 \leq x \leq 1$ and we consider the function $a(x)=x^{2} \quad($ so $0 \leq a \leq 1)$
and the inverse has two parts:

$$
x= \pm \sqrt{a}
$$

To get the pdf of a we include the contributions from both parts:

$$
g(a)=\frac{-\sqrt{a}+1}{2 \cdot 2 \sqrt{a}}+\frac{\sqrt{a}+1}{2 \cdot 2 \sqrt{a}}=\frac{1}{2 \sqrt{a}}, \quad 0 \leq a \leq 1
$$

Functions of more than one random variable

Consider a vector r.v. $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ that follows $f\left(x_{1}, \ldots, x_{n}\right)$ and consider a scalar function $a(\boldsymbol{x})$.

The pdf of a is found from

$$
g\left(a^{\prime}\right) d a^{\prime}=\int \ldots \int_{d S} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
$$

$d S=$ region of \boldsymbol{x}-space between (hyper)surfaces defined by

$$
a(\vec{x})=a^{\prime}, a(\vec{x})=a^{\prime}+d a^{\prime}
$$

Functions of more than one r.v. (2)

Example: r.v.s $x, y>0$ follow joint pdf $f(x, y)$,
consider the function $z=x y$. What is $g(z)$?

$$
\begin{aligned}
& g(z) d z=\int \ldots \int_{d S} f(x, y) d x d y \\
&=\int_{0}^{\infty} d x \int_{z / x}^{(z+d z) / x} f(x, y) d y \\
& \rightarrow g(z)=\int_{0}^{\infty} f\left(x, \frac{z}{x}\right) \frac{d x}{x} \\
&=\int_{0}^{\infty} f\left(\frac{z}{y}, y\right) \frac{d y}{y} \\
& \text { (Mellin convolution) }
\end{aligned}
$$

More on transformation of variables

Consider a random vector $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ with joint pdf $f(\vec{x})$.
Form n linearly independent functions $\vec{y}(\vec{x})=\left(y_{1}(\vec{x}), \ldots, y_{n}(\vec{x})\right)$
for which the inverse functions $x_{1}(\vec{y}), \ldots, x_{n}(\vec{y})$

Then the joint pdf of the vector of functions is $g(\vec{y})=|J| f(\vec{x})$
where J is the
Jacobian determinant: $\quad J=\left|\begin{array}{cccc}\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}} & \cdots & \frac{\partial x_{2}}{\partial y_{n}} \\ \vdots & & & \vdots \\ & & \ldots & \frac{\partial x_{n}}{\partial y_{n}}\end{array}\right|$
For e.g. $g_{1}\left(y_{1}\right)$ integrate $g(\vec{y})$ over the unwanted components.

Statistical Data Analysis Lecture 2-2

- Expectation values
- Covariance and correlation

Expectation values

Consider continuous r.v. x with pdf $f(x)$.
Define expectation (mean) value as $E[x]=\int x f(x) d x$
Notation (often): $E[x]=\mu$ ~"centre of gravity" of pdf.

For discrete r.v.s, replace integral by sum: $\quad E[x]=\sum_{x_{i} \in S} x_{i} P\left(x_{i}\right)$
For a function $y(x)$ with pdf $g(y)$,
$E[y]=\int y g(y) d y=\int y(x) f(x) d x \quad$ (equivalent)

Variance, standard deviation

Variance: $\quad V[x]=E\left[x^{2}\right]-\mu^{2}=E\left[(x-\mu)^{2}\right]$
Notation: $V[x]=\sigma^{2}$
Standard deviation: $\sigma=\sqrt{\sigma^{2}}$
$\sigma \sim$ width of pdf, same units as x.

Relation between σ and other measures of width, e.g., Full Width at Half Max (FWHM) depend on the pdf, e.g., FWHM $=2.35 \sigma$ for Gaussian.

Moments of a distribution

Can characterize shape of a pdf with its moments:

$$
\begin{aligned}
& E\left[x^{n}\right]=\int x^{n} f(x) d x \equiv \mu_{n}^{\prime} \\
&=n \text {th algebraic moment, e.g., } \mu_{1}^{\prime}=\mu \text { (the mean) } \\
& \begin{aligned}
E\left[(x-E[x])^{n}\right] & =\int(x-\mu)^{n} f(x) d x \equiv \mu_{n} \\
& =n \text {th central moment, e.g., } \mu_{2}=\sigma^{2}
\end{aligned}
\end{aligned}
$$

Zeroth moment = 1 (always). Higher moments may not exist.
$3^{\text {rd }}$ moment is a measure of "skewness": $\quad \tilde{\mu}^{3}=E\left[\left(\frac{x-\mu}{\sigma}\right)^{3}\right]$

Expectation values - multivariate case

Suppose we have a 2-D joint pdf $f(x, y)$.
By "expectation value of x " we mean:

$$
E[x]=\iint x f(x, y) d x d y=\int x f_{x}(x) d x=\mu_{x}
$$

Sometimes it is useful to consider e.g. the conditional expectation value of x given y,

$$
\begin{aligned}
E[x \mid y]=\int x f(x \mid y) d x \\
\frac{f(x, y)}{f_{y}(y)}
\end{aligned}
$$

Covariance and correlation

Define covariance $\operatorname{cov}[x, y]$ (also use matrix notation $V_{x y}$) as

$$
\operatorname{cov}[x, y]=E[x y]-\mu_{x} \mu_{y}=E\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right]
$$

Correlation coefficient (dimensionless) defined as

$$
\rho_{x y}=\frac{\operatorname{cov}[x, y]}{\sigma_{x} \sigma_{y}}
$$

$$
\text { Can show }-1 \leq \rho \leq 1
$$

If x, y, independent, i.e., $f(x, y)=f_{x}(x) f_{y}(y)$

$$
E[x y]=\iint x y f(x, y) d x d y=\mu_{x} \mu_{y}
$$

$\rightarrow \operatorname{cov}[x, y]=0$
N.B. converse not always true.

Correlation (cont.)

$$
\rho=-0.75
$$

$$
\rho=0.25
$$

Covariance matrix

Suppose we have a set of n random variables, say, x_{1}, \ldots, x_{n}.
We can write the covariance of each pair as an $n \times n$ matrix:

$$
\begin{gathered}
V_{i j}=\operatorname{cov}\left[x_{i}, x_{j}\right]=\rho_{i j} \sigma_{i} \sigma_{j} \\
V=\left(\begin{array}{cccc}
\sigma_{1}^{2} & \rho_{12} \sigma_{1} \sigma_{2} & \ldots & \rho_{1 n} \sigma_{1} \sigma_{n} \\
\rho_{21} \sigma_{2} \sigma_{1} & \sigma_{2}^{2} & \ldots & \rho_{2 n} \sigma_{2} \sigma_{n} \\
\vdots & & & \\
\rho_{n 1} \sigma_{n} \sigma_{1} & \rho_{n 2} \sigma_{n} \sigma_{2} & \ldots & \sigma_{n}^{2}
\end{array}\right) \quad \begin{array}{l}
\text { Covariance matrix is: } \\
\text { symmetric, } \\
\text { diagonal = variances, } \\
\text { positive semi-definite: } \\
z^{T} V z \geq 0 \text { for all } z \in \mathbb{R}^{n}
\end{array}
\end{gathered}
$$

Correlation matrix

Closely related to the covariance matrix is the $n \times n$ matrix of correlation coefficients:

$$
\begin{gathered}
\rho_{i j}=\frac{\operatorname{cov}\left[x_{i}, x_{j}\right]}{\sigma_{i} \sigma_{j}} \\
\rho=\left(\begin{array}{cccc}
1 & \rho_{12} & \cdots & \rho_{1 n} \\
\rho_{21} & 1 & \cdots & \rho_{2 n} \\
\vdots & & \ddots & \vdots \\
\rho_{n 1} & \rho_{n 2} & \ldots & 1
\end{array}\right) \quad \begin{array}{l}
\text { By construction, diagonal } \\
\text { elements are } \rho_{i i}=1
\end{array}
\end{gathered}
$$

Correlation vs. independence

Consider a joint pdf such as:
I.e. here $f(-x, y)=f(x, y)$

Because of the symmetry, we have $E[x]=0$ and also
$E[x y]=\int_{-\infty}^{\infty} \int_{-\infty}^{0} x y f(x, y) d x d y+\int_{-\infty}^{\infty} \int_{0}^{\infty} x y f(x, y) d x d y=0$
and so $\rho=0$, the two variables x and y are uncorrelated.
But $f(y \mid x)$ clearly depends on x, so x and y are not independent.
Uncorrelated: the joint density of x and y is not tilted.
Independent: imposing x does not affect conditional pdf of y.

Statistical Data Analysis Lecture 2-3

- Error propagation
- goal: find variance of a function
- derivation of formula
- limitations
- special cases

Error propagation

Suppose we measure a set of values $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ and we have the covariances $V_{i j}=\operatorname{cov}\left[x_{i}, x_{j}\right]$ which quantify the measurement errors in the x_{i}.

Now consider a function $y(\vec{x})$.
What is the variance of $y(\vec{x})$?
The hard way: use joint pdf $f(\vec{x})$ to find the pdf $g(y)$,
then from $g(y)$ find $V[y]=E\left[y^{2}\right]-(E[y])^{2}$.

Often not practical, $f(\vec{x})$ may not even be fully known.

Error propagation formula (1)

Suppose we had $\vec{\mu}=E[\vec{x}]$
in practice only estimates given by the measured \vec{x}
Expand $y(\vec{x})$ to 1 st order in a Taylor series about $\vec{\mu}$

$$
y(\vec{x}) \approx y(\vec{\mu})+\sum_{i=1}^{n}\left[\frac{\partial y}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}}\left(x_{i}-\mu_{i}\right)
$$

To find $V[y]$ we need $E\left[y^{2}\right]$ and $E[y]$.

$$
E[y(\vec{x})] \approx y(\vec{\mu}) \text { since } E\left[x_{i}-\mu_{i}\right]=0
$$

Error propagation formula (2)

$$
\begin{aligned}
& E\left[y^{2}(\vec{x})\right] \approx y^{2}(\vec{\mu})+2 y(\vec{\mu}) \sum_{i=1}^{n}\left[\frac{\partial y}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}} E\left[x_{i}-\mu_{i}\right] \\
& \quad+E\left[\left(\sum_{i=1}^{n}\left[\frac{\partial y}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}}\left(x_{i}-\mu_{i}\right)\right)\left(\sum_{j=1}^{n}\left[\frac{\partial y}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}}\left(x_{j}-\mu_{j}\right)\right)\right] \\
& \quad=y^{2}(\vec{\mu})+\sum_{i, j=1}^{n}\left[\frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}} V_{i j}
\end{aligned}
$$

Putting the ingredients together gives the variance of $y(\vec{x})$

$$
\sigma_{y}^{2} \approx \sum_{i, j=1}^{n}\left[\frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}} V_{i j}
$$

Error propagation formula (3)

If the x_{i} are uncorrelated, i.e., $V_{i j}=\sigma_{i}^{2} \delta_{i j}$, then this becomes

$$
\sigma_{y}^{2} \approx \sum_{i=1}^{n}\left[\frac{\partial y}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}}^{2} \sigma_{i}^{2}
$$

Similar for a set of m functions $\vec{y}(\vec{x})=\left(y_{1}(\vec{x}), \ldots, y_{m}(\vec{x})\right)$

$$
U_{k l}=\operatorname{cov}\left[y_{k}, y_{l}\right] \approx \sum_{i, j=1}^{n}\left[\frac{\partial y_{k}}{\partial x_{i}} \frac{\partial y_{l}}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}} V_{i j}
$$

or in matrix notation $U=A V A^{T}$, where

$$
A_{i j}=\left[\frac{\partial y_{i}}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}}
$$

Error propagation - limitations

The 'error propagation' formulae tell us the covariances of a set of functions
$\vec{y}(\vec{x})=\left(y_{1}(\vec{x}), \ldots, y_{m}(\vec{x})\right)$ terms of the covariances of the original variables.

N.B. We have said nothing about the exact pdf of the x_{i}, e.g., it doesn't have to be Gaussian.

Error propagation - special cases

$$
\begin{array}{ll}
y=x_{1}+x_{2} & \rightarrow \sigma_{y}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+2 \operatorname{cov}\left[x_{1}, x_{2}\right] \\
y=x_{1} x_{2} & \rightarrow \frac{\sigma_{y}^{2}}{y^{2}}=\frac{\sigma_{1}^{2}}{x_{1}^{2}}+\frac{\sigma_{2}^{2}}{x_{2}^{2}}+2 \frac{\operatorname{cov}\left[x_{1}, x_{2}\right]}{x_{1} x_{2}}
\end{array}
$$

That is, if the x_{i} are uncorrelated:
add errors quadratically for the sum (or difference), add relative errors quadratically for product (or ratio).

But correlations can change this completely...

Error propagation - special cases (2)

Consider $y=x_{1}-x_{2}$ with

$$
\begin{gathered}
\mu_{1}=\mu_{2}=10, \quad \sigma_{1}=\sigma_{2}=1, \quad \rho=\frac{\operatorname{cov}\left[x_{1}, x_{2}\right]}{\sigma_{1} \sigma_{2}}=0 . \\
V[y]=1^{2}+1^{2}=2, \rightarrow \sigma_{y}=1.4
\end{gathered}
$$

Now suppose $\rho=1$. Then

$$
V[y]=1^{2}+1^{2}-2=0, \rightarrow \sigma_{y}=0
$$

i.e. for 100% correlation, error in difference $\rightarrow 0$.

Statistical Data Analysis Lectures 2-4 through 3-2 intro

We will now run through a short catalog of probability functions and pdfs.

For each (usually) show expectation value, variance, a plot and discuss some properties and applications.

See also chapter on probability from pdg.lbl.gov
For a more complete catalogue see e.g. the handbook on statistical distributions by Christian Walck from staff.fysik.su.se/~walck/suf9601.pdf

Some distributions

Distribution/pdf	Example use in Particle Physics
Binomial	Branching ratio
Multinomial	Histogram with fixed N
Poisson	Number of events found
Uniform	Monte Carlo method
Exponential	Decay time
Gaussian	Measurement error
Chi-square	Goodness-of-fit
Cauchy	Mass of resonance
Landau	lonization energy loss
Beta	Prior pdf for efficiency
Gamma	Sum of exponential variables
Student's t	Resolution function with adjustable tails

Statistical Data Analysis Lecture 2-4

- Discrete probability distributions
- binomial
- multinomial
- Poisson

Binomial distribution

Consider N independent experiments (Bernoulli trials): outcome of each is 'success' or 'failure', probability of success on any given trial is p.

Define discrete r.v. $n=$ number of successes $(0 \leq n \leq N)$.
Probability of a specific outcome (in order), e.g. 'ssfsf' is

$$
p p(1-p) p(1-p)=p^{n}(1-p)^{N-n}
$$

But order not important; there are $\frac{N!}{n!(N-n)!}$
ways (permutations) to get n successes in N trials, total probability for n is sum of probabilities for each permutation.

Binomial distribution (2)

The binomial distribution is therefore

For the expectation value and variance we find:

$$
\begin{aligned}
& E[n]=\sum_{n=0}^{N} n f(n ; N, p)=N p \\
& V[n]=E\left[n^{2}\right]-(E[n])^{2}=N p(1-p)
\end{aligned}
$$

Binomial distribution (3)

Binomial distribution for several values of the parameters:

Example: observe N decays of $\mathrm{W}^{ \pm}$, the number n of which are $\mathrm{W} \rightarrow \mu \nu$ is a binomial r.v., $p=$ branching ratio.

Multinomial distribution

Like binomial but now m outcomes instead of two, probabilities are

$$
\vec{p}=\left(p_{1}, \ldots, p_{m}\right), \quad \text { with } \sum_{i=1}^{m} p_{i}=1
$$

For N trials we want the probability to obtain:
n_{1} of outcome 1,
n_{2} of outcome 2,

```
        :
\(n_{m}\) of outcome \(m\).
```

This is the multinomial distribution for $\vec{n}=\left(n_{1}, \ldots, n_{m}\right)$

$$
f(\vec{n} ; N, \vec{p})=\frac{N!}{n_{1}!n_{2}!\cdots n_{m}!} p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{m}^{n_{m}}
$$

Multinomial distribution (2)

Now consider outcome i as 'success', all others as 'failure'.
\rightarrow all n_{i} individually binomial with parameters N, p_{i}

$$
E\left[n_{i}\right]=N p_{i}, \quad V\left[n_{i}\right]=N p_{i}\left(1-p_{i}\right) \quad \text { for all } i
$$

One can also find the covariance to be

$$
V_{i j}=N p_{i}\left(\delta_{i j}-p_{j}\right)
$$

Example: $\vec{n}=\left(n_{1}, \ldots, n_{m}\right)$ represents a histogram with m bins, N total entries, all entries independent.

Poisson distribution

Consider binomial n in the limit

$$
N \rightarrow \infty, \quad p \rightarrow 0, \quad E[n]=N p \rightarrow \nu
$$

$\rightarrow n$ follows the Poisson distribution:

$$
f(n ; \nu)=\frac{\nu^{n}}{n!} e^{-\nu} \quad(n \geq 0)
$$

$$
E[n]=\nu, \quad V[n]=\nu
$$

Example: number of scattering events n with cross section σ found for a fixed integrated luminosity, with $\nu=\sigma \int L d t$.

