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Statistical Data Analysis
Lecture 5-1

• Beyond linear classifiers

• Neural networks 
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This is called the single layer 
perceptron:
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The activation function

Can use e.g. the ”logistic 
sigmoid”:

or (esp. with deep neural
networks) the “Rectified 
Linear Unit” (ReLU) function:

x

h(x)
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Fisher (linear): Neural network:
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Neural network example from LEP II
Signal:  e+e- → W+W- (often 4 well separated hadron jets)

Background:  e+e- → qqgg (4 less well separated hadron jets)

←  input variables based on jet
structure, event shape, ...
none by itself gives much separation.

Neural network output:

(Garrido, Juste and Martinez, ALEPH 96-144)
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Statistical Data Analysis
Lecture 5-2

• Network architecture

• Training neural networks

• Overtraining



Theorem:  An MLP with a single hidden layer having a sufficiently
large number of nodes can approximate arbitrarily well the optimal
decision boundary.

Holds for any continuous non-polynomial activation function
Leshno, Lin, Pinkus and Schocken (1993) Neural Networks 6, 861-867

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 5 12

Network architecture

However, the number of required nodes may be very large; 
cannot train well with finite samples of training data.

Recent advances in Deep Neural Networks have shown 
important advantages in having multiple hidden layers.

For particle physics applications of Deep Learning, see e.g. 
Baldi, Sadowski and Whiteson, Nature Communications 5 (2014);  arXiv:1402.4735.
Dan Guest, Kyle Cranmer, Daniel Whiteson, Deep Learning and its Application to LHC 
Physics, Annu. Rev. Nucl. Part. Sci. 2018. 68:1–22,  arXiv:1806.11484.
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Deep Neural Networks
The multilayer perceptron can have be generalized to have an 
arbitrary number of hidden layers, with an arbitrary number of 
nodes in each (= “network architecture”).

A “deep” network has several (or many) hidden layers:

http://neuralnetworksanddeeplearning.com/chap1.html

“Deep Learning” is a very recent and active field of research.
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(or “loss function”)

(not examinable)



G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 5 15

update w for randomly chosen event a, (or ”mini-batch”) 

(“stochastic 
gradient descent”)

(not examinable)
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(not examinable)
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Comments on network training

The algorithms for adjusting the network parameters have 
become a very active field of research (and beyond the scope 
of this course).

Recent ideas include:

“Deep” neural nets, use of ReLU activation function

Stochastic gradient descent:  estimate of gradient 
approximated by a randomly selected subset of the data.

Dropout:  randomly exclude nodes during training 
(prevents “overtraining”)
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Overtraining
Including more parameters in a classifier makes its decision boundary 
increasingly flexible, e.g., more nodes/layers for a neural network.

A “flexible” classifier may conform too closely to the training points; 
the same boundary will not perform well on an independent test 
data sample (→ “overtraining”).

training sample independent test sample
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Monitoring overtraining
If we monitor the fraction of misclassified events (or similar, e.g., 
error function E(w)) for test and training samples, it will usually 
decrease for both as the boundary is made more flexible:

error
rate

flexibility (e.g., number 
of nodes/layers in MLP)

test sample

training sample

optimum at minimum of
error rate for test sample

increase in error rate
indicates overtraining
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Statistical Data Analysis
Lecture 5-3

• Non-parametric probability density estimation

• Kernel density estimator
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Probability Density Estimation (PDE)
A possible way to approximate the likelihood ratio for two 
hypotheses f(x|H0) and f(x|H1) is to first find a non-parametric 
estimator for the corresponding pdfs and then use these to 
define the test statistic (decision function),

Here the term “non-parametric” means the the estimate will 
be very general, not necessarily from a specific pdf family, 
and have a “local” character reflecting training data values.

The n-dimensional histogram was a brute-force example of 
this; there are better ways.

Non-parametric pdf estimates are useful in many ways; here 
for obtaining a test statistic but one example.

(hats denote 
estimators)
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Correlation vs. independence

In general a multivariate pdf f(x) for x = (x1,...,xn) does  not 
factorize into a product of the marginal pdfs for the individual 
variables, and 

only holds if the components of x are independent.

In particular, the components of xmay in general have nonzero 
covariances, i.e., they are correlated:
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Decorrelation of input variables
We can always define new input variables by an orthogonal 
transformation such that the transformed variables are uncorrelated:

One can show that this is achieved when the rows of the matrix A
are the eigenvectors of Vij = cov[xi, xj]  (cf. SDA Sec. 1.7).

u1

u 2

x1

x 2
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x1

x2

Decorrelation is only first step

But even with zero correlation, a multivariate pdf f(x) will in general
have features such that the components are not independent.

pdf with zero covariance (no tilt) 
but components still not 
independent, since clearly

and therefore
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Naive Bayes method
First “decorrelate” x, i.e., find u = Ax, with cov[ui, uj] = V[ui] δij .

Pdfs of x and u are then related by

where

Suppose that the “decorrelated” g(u) can be approximated by
product of marginal pdfs

and take as an estimator for f(x)
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Naive Bayes method (2)

Approximate the pdfs separately for the two hypotheses H0 and 
H1 (separate matrices A0 and A1 and marginal pdfs g0,i, g1,i).  Then 
define test statistic as

Gives “Naive Bayes” classifier. 

Reduces problem of estimating an n-dimensional pdf to finding n
one-dimensional marginal pdfs gi(ui).
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Kernel-based PDE (KDE)
Consider d dimensions, N training events, x1, ..., xN, 
estimate f(x) with

Use e.g. Gaussian kernel:

kernel
bandwidth 
(smoothing parameter)

x where we want 
to know pdf

x of ith training
event

and do individually for each component (i.e. f(x) → gi(ui)).
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Gaussian KDE in 1-dimension
Suppose the pdf (dashed line) below is not known, but we can 
generate or observe values that follow it (the red tick marks):

Goal is to find an approximation to the pdf using the data values.
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Gaussian KDE in 1-dimension (cont.)

Place a kernel pdf (here a Gaussian) centred around each 
generated event weighted by 1/Nevent:
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Gaussian KDE in 1-dimension (cont.)

The KDE estimate the pdf is given by the sum of 
all of the Gaussians:
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Choice of kernel width

The width h of the Gaussians is analogous to the bin width
of a histogram.  If it is too small, the estimator has noise:
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If width of Gaussian kernels too large, structure is washed out:

Choice of kernel width (cont.)
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Various strategies can be applied to choose width h of kernel
based trade-off between bias and variance (noise).

Adaptive KDE allows width of kernel to vary, e.g., wide where
target pdf is low (few events); narrow where pdf is high.

Advantage of KDE:  no training!  

Disadvantage of KDE:  to evaluate we need to sum Nevent terms, 
so if we have many events this can be slow.

Special treatment required if kernel extends beyond range
where pdf defined.  Can e.g., renormalize the kernels to unity
inside the allowed range; alternatively “mirror” the events
about the boundary (contribution from the mirrored events 
exactly compensates the amount lost outside the boundary).

Software in ROOT:  RooKeysPdf (K. Cranmer, CPC 136:198,2001),
or in python:  sklearn.neighbors.KernelDensity

KDE discussion
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Statistical Data Analysis
Lecture 5-4

• Examples of classifiers

• Boosted decision trees
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Each event characterized by 3 variables,  x = (x1, x2, x3):

x1 x2 x3

back-
ground

signal
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Test example (x1, x2, x3)

no cut on x3

x3 < 0.5 x3 < 0.25

x3 < 0.75

x1

x1x1

x1

x2 x2

x2 x2
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Find these on next homework assig
nment.

y y
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Particle i.d. in MiniBooNE
Detector is a 12-m diameter 
tank of mineral oil exposed to a 
beam of neutrinos and viewed 
by 1520 photomultiplier tubes:

H.J. Yang, MiniBooNE PID, DNP06

Search for νμ to νe oscillations 
required particle i.d. using 
information from the PMTs.
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Decision trees
Out of all the input variables, find the one for which with a single “cut” 
(require e.g. x < xc) gives best improvement in signal purity:

Example by MiniBooNE experiment,
B. Roe et al., NIM 543 (2005) 577

where wi. is the weight of the ith
event.

Resulting nodes classified as either 
signal/background.

Iterate until stop criterion reached 
based on e.g. purity or minimum 
number of events in a node.

The set of cuts defines the decision 
boundary.

p
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Finding the best single cut
The level of separation within a node can, e.g., be quantified by 
the Gini coefficient, calculated from the (s or b) purity p as:

For a cut that splits a set of events a into subsets b and c, one
can quantify the improvement in separation by the change in 
weighted Gini coefficients:

where, e.g.,  

Choose e.g. the cut to the maximize Δ.

p = 0 or 1 gives min G = 0, 
p = 1/2 gives max G = 1/4.
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Decision trees (2)
The terminal nodes (leaves) are classified a signal or background
depending on majority vote (or e.g. signal fraction greater than a
specified threshold).

This classifies every point in input-variable space as either signal
or background, a decision tree classifier, with discriminant function

f(x) = 1 if x in signal region, -1 otherwise

Decision trees tend to be very sensitive to statistical fluctuations in
the training sample.

Ensemble methods such as boosting can be used to reduce these 
fluctuations.
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Boosting
Boosting is a general method for creating a set of classifiers that 
can be combined to achieve a new one that is better than any 
individual one (an example of ”ensemble learning”).

Often applied to decision trees but can be applied to any classifier.

Suppose we have a training sample T consisting of N events with

x1,..., xN event data vectors
y1,..., yN true class labels (+1 or -1)
w1,..., wN event weights

Define a rule to create from this an ensemble of training samples
T1, T2,..., derive a classifier from each and average them.

Trick is to create modifications in the training samples to give
classifiers with smaller error rates than the preceding ones.

A successful example is AdaBoost (Freund and Schapire, 1997).
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AdaBoost
First initialize the training sample T1 using the original

x1,..., xN event data vectors
y1,..., yN true class labels (+1 or -1)
w1(1),..., wN(1) event weights

with the weights equal and normalized such that

Then train the classifier f1(x) (e.g., a decision tree) with a method
that uses the event weights.  Recall for an event at point  x, 

f1(x) = +1 for x in signal region, -1 in background region          

We will define an iterative procedure that gives a series of
classifiers f1(x),  f2(x),...
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Error rate of the kth classifier
At the kth iteration the classifier fk(x) has an error rate

where I(X) = 1 if X is true and is zero otherwise.

Next assign a score to the kth classifier based on its error rate,
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Updating the event weights
The classifier at each iterative step is found from an updated 
training sample, in which the weight of event i is modified from 
step k to step k+1 according to

Here Zk is a normalization factor defined such that the sum of the 
weights over all events is equal to one.

That is, the weight for event i is increased in the k+1 training 
sample if it was classified incorrectly in step k. 

Idea is that next time around the classifier should pay more 
attention to this event and try to get it right.
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Defining the decision function
After K boosting iterations, the final decision function is defined 
as a weighted linear combination of the fk(x),

One can show that the error rate on the training data of the final 
classifier satisfies the bound

i.e. as long as the εk < ½ (better than random guessing), with
enough boosting iterations every event in the training sample will
be classified correctly.
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Monitoring overtraining

From MiniBooNE
example:

Performance stable
after a few hundred
trees.

t t
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Ensemble methods
Boosting is an example of “ensemble learning”; the original
training sample is “boosted” into an ensemble of samples.

Other related methods include:

Bagging (bootstrap aggregating) :  the training samples are created
by sampling events randomly from the original sample with
replacement.  In a given sample, an event might occur zero, one or 
multiple times.

Random forest:  a type of bagging where features are randomly 
dropped.

More in Ch. 8 of An Introduction to Statistical Learning with 
Applications in R by James, Witten, Hastie and Tibshirani; see also
the videos by Hastie and Tibshirani:
https://www.r-bloggers.com/2014/09/in-depth-introduction-to-machine-learning-in-15-hours-of-expert-videos/

http://faculty.marshall.usc.edu/gareth-james/ISL/ISLR%20Seventh%20Printing.pdf
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Extra slides
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A simple example (2D)
Consider two variables, x1 and x2, and suppose we have formulas 
for the joint pdfs for both signal (s) and background (b) events (in 
real problems the formulas are usually notavailable).

f(x1|x2) ~ Gaussian, different means for s/b,
Gaussians have same σ, which depends on x2,
f(x2) ~ exponential, same for both s and b,
f(x1, x2) = f(x1|x2) f(x2):
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Joint and marginal distributions of x1, x2

background

signal

Distribution f(x2) same for s, b.

So does x2 help discriminate
between the two event types?
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Likelihood ratio for 2D example
Neyman-Pearson lemma says best critical region is determined
by the likelihood ratio:

Equivalently we can use any monotonic function of this as
a test statistic, e.g.,

Boundary of optimal critical region will be curve of constant ln t, 
and this depends on x2!
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Contours of constant MVA output

Exact likelihood ratio Fisher discriminant
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Contours of constant MVA output

Multilayer Perceptron
1 hidden layer with 2 nodes

Boosted Decision Tree
200 iterations (AdaBoost)

Training samples:  105 signal and 105 background events
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ROC curve

ROC = “receiver operating 
characteristic” (term from 
signal processing).

Shows (usually) background 
rejection (1-εb) versus 
signal efficiency εs.

Higher curve is better; 
usually analysis focused on
a small part of the curve.
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2D Example:  discussion
Even though the distribution of x2 is same for signal and 
background, x1 and x2 are not independent, so using x2 as an 
input variable helps.

Here we can understand why:  high values of x2 correspond to a 
smaller σ for the Gaussian of x1.  So high x2 means that the value 
of x1 was well measured.

If we don’t consider x2, then all of the x1 measurements are 
lumped together.  Those with large σ (low x2) “pollute” the well 
measured events with low σ (high x2).

Often in HEP there may be variables that are characteristic of 
how well measured an event is (region of detector, number of 
pile-up vertices,...).  Including these variables in a multivariate 
analysis preserves the information carried by the well-measured 
events, leading to improved performance.
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Summary on multivariate methods
Particle physics has used several multivariate methods for many years:

linear (Fisher) discriminant
neural networks
naive Bayes

and has in recent years started to use a few more:

boosted decision trees
support vector machines
kernel density estimation
k-nearest neighbour

The emphasis is often on controlling systematic uncertainties between
the modeled training data and Nature to avoid false discovery.

Although many classifier outputs are "black boxes", a discovery
at 5σ significance with a sophisticated (opaque) method will win the
competition if backed up by, say, 4σ evidence from a cut-based method.


