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Statistical Data Analysis
Lecture 8-1

e Basicidea of curve fitting
e The method of Least Squares (LS)
e LS from maximum likelihood

e LS with correlated measurements
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Curve fitting: basic idea

10

Consider N independent 8. p(x; 6)

measured values y,,i=1,.., N.

Each y; has a standard deviation >
g;, and is measured at a value x;

of a control variable x known 21
with negligible uncertainty:

The goal is to find a curve u(x; ) that passes “close to” the data
points.

Suppose the functional form of u(x; 0) is given; goal is to estimate
its parameters @ (= “curve fitting”).
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Minimising the residuals

If a measured value y; has a small g;, we want it to be
closer to the curve, i.e., measure the distance from point to
curve in units of o;:

yi — (23 0)
0

standardized residual of it" point =

Idea of the method of Least Squares is to choose the parameters
that give the minimum of the sum of squared standardized
residuals, i.e., we should minimize the “chi-squared”:

N

 — U\ T4 :
XQ(H) _ Z (yz ,LLO(Z 9)>
1=1 L
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Least squares estimators

The values that minimize y*(0) define the least-squares
estimators for the parameters, e.g., here assuming

,U(ZL‘; 6’0, 91) = 9() + 9133

10

; dp = 2.258

4 0, = 0.741

® data
fit result

0 2 4 6 8 10
X
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Gaussian likelihood function — LS estimators

Suppose the measurements yy, ..., Yy, are independent Gaussian
rv.s with means E[y;] = u(x;; ) and variances V[y,] = 6/, so the
the likelihood function is

H o~ (Wi—p(xi;0))% /207
\/27T0Z
The log-likelihood functlon is therefore
N
L (Wi — p(2i;8))°
InL(0) = —5 ; p + const.

So maximizing the likelihood is equivalent to minimizing

i — w(xi; 0))°
2 (0) = Z y 'U(;C ) = —21n L(0) + const.
i=1 i

The minimum of y?(#) defines the least squares (LS) estimators 0
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ML < LS

So least-squares (LS) estimators same as maximum likelihood
(ML) when the measurements are y, ~ Gauss(u(x; 0), o;).

Note that the y, here are independent but not identically
distributed. Do not confuse this case with our previous
example of an i.i.d. sample with x; ~ Gauss(u, o).

If the y; are not Gaussian distributed the minimum of y2(0)
still defines the LS estimators. But for most applications in
practice the y; are at least approximately Gaussian (a
consequence of the Central Limit Theorem).

Often minimize y*(#), numerically (e.g. programs like curve_fit
or MINUIT).
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History

Least Squares fitting also called “regression”

F. Galton, Regression towards mediocrity in hereditary
stature, The Journal of the Anthropological Institute of Great
Britain and Ireland. 15: 246—-263 (1886).

Developed earlier by Laplace and Gauss:

C.F. Gauss, Theoria Motus Corporum Coelestium in Sectionibus
Conicis Solem Ambentium, Hamburgi Sumtibus Frid. Perthes et
H. Besser Liber I, Sectio Il (1809);

C.F. Gauss, Theoria Combinationis Observationum Erroribus
Minimis Obnoxiae, pars prior (15.2.1821) et pars posterior
(2.2.1823), Commentationes Societatis Regiae Scientiarium
Gottingensis Recectiores Vol. V (MDCCCXXIII).
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LS with correlated measurements

If the y, follow a multivariate Gaussian with covariance matrix V,

F5:0) = G O |5 — w(O)TV "y - (6)

where u' = (u(x,),...,u(xy)), then maximizing the likelihood is
equivalent to minimizing

X*(0) = (y — p(0))'V{y — n(0))

N
= > (yi — (zi;0))V;  (yj — (s 0))

1,9=1
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LS with correlated measurements (2)

For the special case of a diagonal covariance matrix, i.e.,
uncorrelated measurements. Then

(of 0 ... 0 (1ot 0 .00
0 G% 0o ... 0 1/63 0
V = — V1=
N0 0 ... o) \ 0 0 ... 1/02)

V1= 5--/01-2, carry out one of the sums, y*(#) same as before:

O = 3 (5 u(:0) 40y~ ulas:6) >—Z(% plzi; 0))°

O'
1,7=1 L
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Statistical Data Analysis
Lecture 8-2

e Finding the LS estimators
e The linear Least Squares problem

e Bias and variance of LS estimators
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Recap of Least Squares

Measurements, yy, ..., Vy 10

; 0
p(x )\

Standard deviations oy, ..., oy 81

or Vij = cov|[y, J’j] - °
Control variable xi, ..., xy y 4,
24 l
Fit function u(x;; ) = E[y;]
% 2 4 6 8 10
N
i — ()
Estimate 8 by minimizing Y2 (0) = Z Ly ’u(gj )
i=1 i

or  X*(0) = (y —n(0)"'V ' (y — n))
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Finding estimators in closed form

For a limited class of problem it is possible to find the LS estimators
in closed form. An important example is when the function u(x; )
is linear in the parameters 0 , e.g., a polynomial of order M (note
the function does not have to be linear in x):

M
w(x; @) = Z 0, x"
n=>0
As an example consider a straight line (two parameters):
wu(z;0) =0y + 612

0 — O11;)?
5

g;

N
— 0
We need to minimize: XQ(QO’ f1) = Z (Yi
i=1
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Finding estimators in closed form (2)

Set the derivatives of y*(#) with respect to the parameters equal
to zero:

0_x2 g: —2(yi — bo — b1i) _

o = 2 0,
A2 N, —22(yi — 6o — 014

O _ 2 b b))
064 P o;
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Finding estimators in closed form (3)

The equations can be rewritten in matrix form as

\Zzljz N

/Zz 1% Zz 17

IE

ey

which has the general form

a b 9()

c d 91
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Read off g, b, ¢, d,
e, f, by comparing
with eq. above.
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Finding estimators in closed form (4)

Recall inverse of a 2 X 2 matrix:

y a b = 1 d —b
\ec d)’ Cad—bc\ —¢ ¢

Apply A-! to both sides of previous eq. to find the estimators:

é de — bf
0 — ;
ad — be
631 _ af — ec Note estimators are linear

ad — bc functions of the measured y,.
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Linear LS Problem

Suppose the fit function is linear in the parameters ' = (6,...., 6,,),
M
w(x; @) = Z«%ai(:{;)
i=1

where the a,(x) are a set of linearly independent basis functions,
and write u'(0) = (u(x; 0),..., u(xy; 0)) .

Define NXM matrix A;; = a(x;), so u(0) = A0.

To find the LS estimators minimize:
X*(0) = (y — n(0))' V'l (y — n(0))

= (y — A0)' vl (y — A6)
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Linear LS Problem (2)

Set derivatives with respect to 6, to zero,

VYi(0) = —2(AT Vv ly — ATv—1A40) = 0

0 0
v_ (a_el’...7m>

Solve system of M linear equations to find the LS estimators,
0=(ATv1A)" ATV ly = By

Note that the estimators are linear functions of the measured y,.
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Bias of LS estimators

By hypothesis E[y] = u = A0 so for the linear problem, the LS
estimators are unbiased:

E[0] = (ATv—tA) ATV 1 E[y]
_ (ATV_IA)_IATV_lp,
= (Alv-tAa)ytAtv-1la6 =6

For the general nonlinear problem the LS estimators can have
a bias.
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Variance of LS estimators for linear problem

For the linear LS problem, the variance can be found using
error propagation. Using

Vij = covlyi, y;|
0 = By
Uij = covld;, éj]
We find
U=BvB! =Alv-1t4)-!

Since the estimators are linear in the y;, error propagation
gives an exact result.

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 8

20



Variance of LS estimators for Gaussian data

1
If y, ~ Gauss, then we found In L(0) = —5 2(6) + const.

To the extent this (approximately) holds, we can use

0%1In L
U-l=—-F
5= F |57
and so we estimate the inverse covariance matrix with
l/j._.l _ 82 lnL _ l 82X2
R 5’92-86’]- 0—0 2 86’16’93- 0—0

and invert to estimate the covariance matrix U.

For Gaussian data with the linear LS problem, U is the minimum
variance bound (the LS estimators are unbiased and efficient).
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Covariance from derivatives of y?(0)

This is what programs like curve_fit and MINUIT do (derivatives
computed numerically). Example with straight-line fit gives:

10

8 A
0y =
6 + +
> A
. b, =
21 e data
- fit result
% 3 2 & & 10
x -~
0'00
O’él

( 0.08537 —0.01438)
U =

cov|[fo, 61]
—0.01438 0.003275

p
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2.258

0.741

— 029,
— 0.057 .

—0.014
—0.86 .
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The contour y%(@) = y? . +1

If u(x; 0) is linear in the parameters, then y?(#) is quadratic:

M
R 1 aQXQ
2 2 -
CO =0 +5 D 5

i,7=1

0=0

A

= Xouin + (0 —0)'UT(0 - 6)

Standard deviations from

tangents to (hyper-) planes of @I [

X2 (9) — X?nin + 1 (S

(corresponds to
InL(#) =InL, ., — ')
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Statistical Data Analysis
Lecture 8-3

e Goodness of fit from y2_.

e Example of least-squares fit

G. Cowan / RHUL Physics
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A “good” fit

In an earlier example we fitted data that were reasonably well
described by a straight line:

10
8-
6 + +
>
4
2 e data
fit result
0 : : . :
0 2 4 6 8 10
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A “bad” fit

But what if a straight-line fit looks like this:

10

8_

6 + ' ¢

>
4-
¢
21 e data
fit result
0 . . : :
0 2 4 6 8 10

X

Test hypothesized form of fit function with p-value, if this is
below some (user-defined) threshold, reject the hypothesis and
try some other function, e.g. a polynomial of higher order.
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Goodness-of-fit from y 2 .

The value of the y? at its minimum is a measure of the level
of agreement between the data and fitted curve:

N 0\ \2
9 (yi — (43 0))
Xmin — Z 0_2
i=1 i

It can therefore be used as a goodness-of-fit statistic to
test the hypothesized functional form u(x; 8).
The p-value of the hypothesized functional form is
0
p=[, flting)dt

Xmin

= the probability, under assumption of u(x; 8),
to get a x%,,,, as high as the one we got or higher.
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Distribution of y 2.

One can show that if the data follow y ~ Gauss(u(x; 6),0), i.e., if
the fit function is correct for some 6, then the statistic t = ..,

follows the chi-square pdf,

f(ting) =

1 ina/2-1 /2
2nd/2[(ny/2)

where the number of degrees of freedom is

ny = number of data points - number of fitted parameters
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G. Cowan / RHUL Physics

The “chi-square per degree of freedom”

Recall also the chi-square pdf has an expectation value equal to
the number of degrees of freedom, so

Linin ~ N4 — fitis “good”
Lomin > Ng — fit is “bad”

X min K Mg — fitis better than what one would expect given

fluctuations that should be present in the data.

Often this is done using the ratio y?,.../ny, i.e. fit is good if
the “chi-square per degree of freedom” comes out not much

greater than 1.

But, best to quote both »?,... and n4, not just their ratio, since e.g.

szin = 15; ng = 10 — p-value =0.13
2. =150 ny = 100 — p-value = 0.00090

Statistical Data Analysis / lecture week 8
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p-value for the “good” fit

N =9 data points, m = 2 fitted parameters,
szin /ndof: 82/7 — 12

2 —
X min 82
10 0.15
8_
6. + ¢ 0.10
>
4
0.051
27 e data
fit result
. : - - 0.00-
00 2 4 6 8 10 0 5 10 15 20 25
X X2
min

If the straight-line hypothesis is true, expect equal or worse

agreement almost 1/3 of the time (i.e. our result is not unusual).
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p-value for the “bad” fit

N =9 data points, m = 2 fitted parameters,

Xmin /Maor = 20.9/7 = 3.7 min = 20.9
Lo 0.15
5.
| + | 0.10- svalue
- + 0.0039
0.05-
21 ' e data /
oz 4 & 8 10 000 s

X

sznin
So is the straight-line hypothesis correct? It could be, but if
so we would expect a y?,;, as high as observed or higher

only 4 times out of a thousand.
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A better fit

If we decide the agreement between data and hypothesis is
not good enough (exact threshold is a subjective choice), we can
try a different model, e.g., a 2"9 order polynomial:

f(x;0) = 0y + 012 + Ooa?

10
8-
szin — 35 for ndof: 6
6 2
> X min/ndof: 0.58
4-
p-value =0.75
2- ® testdata
fit result
0 . . . .
0 2 4 6 8 10
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A Goodness-of-fit vs. statistical errors

If the fit is “bad”, something is “wrong” and you may expect large statistical errors
for the fitted parameters. This is not the case.

The statistical errors say how much the parameter estimates fluctuate when
repeating the experiment, under assumption of the hypothesized fit function.
This is not the same as the degree to which the function can describe the data.

If the hypothesized u(x; ) is not correct, the fitted parameters will have some
systematic uncertainty — a more complex question that we will take up later.

sy stemahc erv .

£(8)
Y ©,+6 x Z
S G4
eo
X o §°
\oaa’ A”‘;‘ J LA gmaJU 0’6\ (SJTJLQ”‘Y‘")
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Statistical Data Analysis
Lecture 8-4

e Example of a least-squares fit

e Least squares to combine measurements
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Ball and ramp data from Galileo

Units in punti
(approx. 1 mm)
h d
1000 1500
828 1340
800 1328
y \* 600 1172
l T < 300 800

[ ]
—

Suppose 4 is set with negligible uncertainty, and
d is measured with an uncertainty o = 15 punti.
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Analysis of ball and ramp data

What is the correct law that relates d and h?

Try different hypotheses:

d = ah
d = ah + Bh?
d = ahP
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d = ah

1800
data

16001 —— d=ah

1400 - )(Z/ndof=662.0/4

1200 -

(punti)

5 1000 -

800 -

600 -

600 800 1000 1200

400 r
200 400
h (punti)
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d = ah + Bh?

1800
data

16001 —— g =ah + ph?
)(z/ndof =64.7/3 —

1400 -

1200 -

(punti)

- 1000

800 1

600 +

400 ! T T T
200 400 600 800 1000 1200

h (punti)
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d = ahP

1800

1600 —— d=ah®
xX2/ngof = 3.76/3

1400 -

=
N
o
o

1000

d (punti)

800 -

600 -

400 T T T T
200 400 600 800 1000 1200

h (punti)
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Summary of ball-and-ramp analysis

function xfnin Ndof p-value « o4 I} o4 p
d = ah 6620 4 59x10712 1.663 0.0090

d=ah+Bh? 647 3 57x107% 2793 0.047 —0.001351 0.000055 —0.9816
d = ah” 3.76 3 0.29 43.8 4.8 0.511 0.017 —0.9988

Clearly the best fit suggests d ~ 4> and this is exactly what
Newton’s laws predict!
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Using LS to combine measurements

Use LS to obtain weighted average of /N measurements of A:

Y; = result of measurement ¢, ¢ = 1, ..., IV;
g 22 = V'|y;], assume known;

A = true value (plays role of §) = E[y,] for all i

For uncorrelated ;, minimize

2 N (Y — A)Q
A) = ,
() igl o?
Set %\E = () and solve,
N 2
R A yz’/a' : 1
— A\ = : : V[)\] — r
ity 1/0] sy 1/0?
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Combining correlated measurements with LS

If COV[yZ', y]] = V;'j, minimize

X°(A) = g (i = NV iy — A,

1,)=1
N —1
. N o (V7
)\ — w;Yy;. w,; = J=1 Y
— §1 iYis () Z]{;\jlzl(v_l)kl

N
VIAl= X wiVijw;

t,J=1

LS A has zero bias, minimum variance (Gauss-Markov theorem).

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 8

43



Example: averaging two correlated measurements

2
o{ pPO103 )

Suppose we have Y1, 2, and V' = ( 9
po102 05

A 2—
LA =wp + (- w), w =2 PO

0% + 03 — 2p0103

R 2\ 2 2
V[/\] . (1 P )0102 2

p— = g
0? + 03 — 2p0109

The increase in inverse variance due to 2nd measurement is

— 2nd measurement can only help.
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Negative weights in LS average

If p > o1/09, — w < 0,
— weighted average is not between y; and ys (!7)

Cannot happen if correlation due to common data, but
possible for shared random effect; very unreliable if e.g.

P, 01, 09 ncorrect.

See example in SDA Section 7.6.1 with two measurements at same

temperature using two rulers, different thermal expansion coefficients:

average is outside the two measurements; used to improve

estimate of temperature.
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Extra slides
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Finding LS estimators numerically

Start at a given point in the parameter space and move around
according to some strategy to find the point where y%(0) is a
minimum.

0.

J
-
MINCRD NSTEP= 32
For example, alternate minimum
minimizing with respect : :
8 P “ starting Ebomt
to each component of 6: /
Many strategies possible, |
e.g., steepest descent,
0;

conjugate gradients, ...

(see Brandt Ch. 10) Siegmund Brandt, Data Analysis: Statistical and Computational
Methods for Scientists and Engineers 4th ed., Springer 2014
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Fitting the parameters with Python

The routine routine curve_fit from scipy.optimize can
find LS estimators numerically. To use it you need:

import numpy as np
from scipy.optimize import curve_fit

We need to define the fit function u (x; 0), e.g., a straight line:

def func(x, *theta):
thetaO, thetal theta
return theta0 + thetal*x
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Fitting the parameters with Python (2)

The data values (x; y, g;) need to be in the form of NumPy
arrays, e.g,

x = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])
y = np.array([2.7, 3.9, 5.5, 5.8, 6.5, 6.3, 7.7, 8.5, 8.7])
sig = np.array([0.3, 0.5, 0.7, 0.6, 0.4, 0.3, 0.7, 0.8, 0.5])

Start values of the parameters can be specified:
p0 = np.array([1.0, 1.0])
To find the parameter values that minimize y?(0), call curve_fit:
thetaHat, cov = curve_fit(func, x, y, pO, sig, absolute_sigma=True)

Returns estimators and covariance matrix as NumPy arrays.

Need absolute_sigma=True for the fit errors (cov. matrix) to have
desired interpretation.
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