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Sta8s8cal Data Analysis
Lecture 8-1

• Basic idea of curve fitting

• The method of Least Squares (LS)

• LS from maximum likelihood

• LS with correlated measurements
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Curve fitting: basic idea

Consider N independent 
measured values yi, i = 1,.., N.

Each yi has a standard deviaOon 
σi, and is measured at a value xi
of a control variable x known 
with negligible uncertainty:

The goal is to find a curve μ(x; θ) that passes “close to” the data 
points.

Suppose the functional form of μ(x; θ) is given; goal is to estimate 
its parameters θ (= “curve fitting”).

yi± σi

μ(x; θ)
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Minimising the residuals
If a measured value yihas a small σi, we want it to be
closer to the curve, i.e., measure the distance from point to
curve in units of σi:

standardized residual of ith point  = 

Idea of the method of Least Squares is to choose the parameters
that give the minimum of the sum of squared standardized 
residuals, i.e., we should minimize the “chi-squared”:
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Least squares estimators
The values that minimize χ2(θ) define the least-squares 
estimators for the parameters, e.g., here assuming
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Gaussian likelihood function → LS estimators
Suppose the measurements y1, ..., yN, are independent Gaussian 
r.v.s with means E[yi] = μ(xi; θ) and variances V[yi] = σi2 , so the 
the likelihood function is

The log-likelihood function is therefore

So maximizing the likelihood is equivalent to minimizing

The minimum of χ2(θ) defines the least squares (LS) estimators θ.^
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ML ↔ LS

So least-squares (LS) estimators same as maximum likelihood 
(ML) when the measurements are  yi ~ Gauss(μ(xi; θ), σi).

Note that the yi here are independent but not identically 
distributed.  Do not confuse this case with our previous 
example of an i.i.d. sample with xi ~ Gauss(μ, σ).  

If the yi are not Gaussian distributed the minimum of χ 2(θ)
still defines the LS estimators.  But for most applications in 
practice the yi are at least approximately Gaussian (a 
consequence of the Central Limit Theorem).

Often minimize χ2(θ), numerically (e.g. programs like curve_fit
or MINUIT).
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History
Least Squares fi]ng also called “regression” 

F. Galton, Regression towards mediocrity in hereditary 
stature, The Journal of the Anthropological InsOtute of Great 
Britain and Ireland. 15: 246–263 (1886).

Developed earlier by Laplace and Gauss:

C.F. Gauss, Theoria Motus Corporum Coeles:um in Sec:onibus
Conicis Solem Amben:um, Hamburgi SumObus Frid. Perthes et 
H. Besser Liber II, SecOo II (1809);
C.F. Gauss, Theoria Combina:onis Observa:onum Erroribus
Minimis Obnoxiae, pars prior (15.2.1821) et pars posterior
(2.2.1823), CommentaOones SocietaOs Regiae ScienOarium
Go]ngensis RececOores Vol. V (MDCCCXXIII).
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LS with correlated measurements
If the yi follow a multivariate Gaussian with covariance matrix V,

where μT = (μ(x1),...,μ(xN)), then maximizing the likelihood is 
equivalent to minimizing
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LS with correlated measurements (2)
For the special case of a diagonal covariance matrix, i.e., 
uncorrelated measurements.  Then

→

V -1
ij = δij/σi2, carry out one of the sums, χ2(θ) same as before:
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Statistical Data Analysis
Lecture 8-2

• Finding the LS esOmators

• The linear Least Squares problem

• Bias and variance of LS esOmators
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Recap of Least Squares

Measurements, y1, ..., yN
Standard deviations σ1, ..., σN

or Vij = cov[yi, yj]

Control variable x1, ..., xN
Fit function μ(xi; θ) = E[yi]

yi± σi

μ(x; θ)

EsOmate θ by minimizing

or 
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Finding estimators in closed form
For a limited class of problem it is possible to find the LS esOmators 
in closed form.  An important example is when the funcOon μ(x; θ)
is linear in the parameters θ , e.g., a polynomial of order M (note
the funcOon does not have to be linear in x):

As an example consider a straight line (two parameters):

We need to minimize:
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Finding es8mators in closed form (2)

Set the derivatives of χ2(θ) with respect to the parameters equal
to zero:
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Finding estimators in closed form (3)

The equations can be rewritten in matrix form as

which has the general form

Read off a, b, c, d,
e, f, by comparing
with eq. above.
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Finding es8mators in closed form (4)

Recall inverse of a 2×2 matrix:

Apply A-1 to both sides of previous eq. to find the estimators:

Note estimators are linear 
functions of the measured yi.
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Linear LS Problem
Suppose the fit funcOon is linear in the parameters θT = (θ1,..., θΜ),

where the ai(x) are a set of linearly independent basis functions,
and write μT(θ) = (μ(x1; θ),..., μ(xN; θ)) .

Define N⨉M matrix Aij = aj(xi), so μ(θ) = Aθ. 

To find the LS estimators minimize:
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Linear LS Problem (2)
Set derivatives with respect to θi to zero, 

Solve system of M linear equaOons to find the LS esOmators,

Note that the estimators are linear functions of the measured yi.
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Bias of LS estimators
By hypothesis E[y] = μ = Aθ so for the linear problem, the LS 
esOmators are unbiased:

For the general nonlinear problem the LS estimators can have
a bias.
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Variance of LS estimators for linear problem
For the linear LS problem, the variance can be found using
error propagaOon.  Using

We find

Since the esOmators are linear in the yi, error propagaOon 
gives an exact result.



21G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 8

Variance of LS estimators for Gaussian data

If yi ~ Gauss, then we found 

To the extent this (approximately) holds, we can use

and so we estimate the inverse covariance matrix with

and invert to esOmate the covariance matrix U.  

For Gaussian data with the linear LS problem, U is the minimum 
variance bound (the LS esOmators are unbiased and efficient).
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Covariance from derivatives of χ2(θ)
This is what programs like curve_fit and MINUIT do (derivatives 
computed numerically).  Example with straight-line fit gives:

,       
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The contour χ 2(θ) = χ 2
min + 1

If μ(x; θ) is linear in the parameters, then χ2(θ) is quadratic:

Standard deviations from 
tangents to (hyper-) planes of

(corresponds to 
lnL(θ) = lnLmax – ½)
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Statistical Data Analysis
Lecture 8-3

• Goodness of fit from χ 2
min

• Example of least-squares fit
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A “good” fit
In an earlier example we fitted data that were reasonably well 
described by a straight line:
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A “bad” fit
But what if a straight-line fit looks like this:

Test hypothesized form of fit function with p-value, if this is 
below some (user-defined) threshold, reject the hypothesis and 
try some other function, e.g. a polynomial of higher order.
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Goodness-of-fit from χ 2min
The value of the χ2 at its minimum is a measure of the level
of agreement between the data and fined curve:

It can therefore be used as a goodness-of-fit statistic to
test the hypothesized functional form μ(x; θ).

The p-value of the hypothesized functional form is

= the probability, under assumption of μ(x; θ), 
to get a χ2

min as high as the one we got or higher.
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One can show that if the data follow y ~ Gauss(μ(x; θ),σ), i.e., if 
the fit funcOon is correct for some θ, then the staOsOc t = χ2

min
follows the chi-square pdf,

where the number of degrees of freedom is 

nd = number of data points - number of fitted parameters

Distribu;on of χ 2min
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The “chi-square per degree of freedom”
Recall also the chi-square pdf has an expectation value equal to 
the number of degrees of freedom, so

χ2
min  ~  nd →  fit is “good”

χ2
min ≫ nd →  fit is “bad”

χ2
min ≪ nd →  fit is better than what one would expect given

fluctuations that should be present in the data.

Often this is done using the ratio χ2
min/nd, i.e. fit is good if 

the “chi-square per degree of freedom” comes out not much
greater than 1.

But, best to quote both χ2
min and nd, not just their ratio, since e.g.

χ2
min = 15, nd = 10 → p-value = 0.13

χ2
min = 150 nd = 100 → p-value = 0.00090
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p-value for the “good” fit

If the straight-line hypothesis is true, expect equal or worse 
agreement almost 1/3 of the time (i.e. our result is not unusual).

χ2
min = 8.2

p-value 
= 0.32

N = 9 data points,  m = 2 fitted parameters, 
χ2

min /ndof = 8.2/7 = 1.2
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p-value for the “bad” fit
N = 9 data points,  m = 2 fitted parameters, 
χ2

min /ndof = 20.9/7 = 3.7

So is the straight-line hypothesis correct?  It could be, but if
so we would expect a χ2

min as high as observed or higher
only 4 times out of a thousand.  

χ2
min = 20.9

p-value 
= 0.0039



32G. Cowan / RHUL Physics Sta7s7cal Data Analysis / lecture week 8

A better fit
If we decide the agreement between data and hypothesis is
not good enough (exact threshold is a subjective choice), we can 
try a different model, e.g., a 2nd order polynomial:

χ2
min = 3.5 for ndof = 6

χ2
min /ndof = 0.58

p-value = 0.75
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Goodness-of-fit vs. statistical errors
If the fit is “bad”, something is “wrong” and you may expect large sta<s<cal errors 
for the fi=ed parameters.  This is not the case.

The sta<s<cal errors say how much the parameter es<mates fluctuate when 
repea<ng the experiment, under assump<on of the hypothesized fit func<on.  
This is not the same as the degree  to which the func<on can describe the data.

If the hypothesized μ(x; θ) is not correct, the fi=ed parameters will have some 
systema<c uncertainty – a more complex ques<on that we will take up later.
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Sta8s8cal Data Analysis
Lecture 8-4

• Example of a least-squares fit

• Least squares to combine measurements
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Ball and ramp 
data from Galileo

Galileo Galilei, Manuscript f.116, 
Biblioteca Nazionale Centrale di Firenze,
www.bncf.firenze.sbn.it

In 1608 Galileo carried out
experiments rolling a ball
down an inclined ramp to
investigate the trajectory of 
falling objects.
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Ball and ramp data from Galileo

Units in punO
(approx. 1 mm)

Suppose h is set with negligible uncertainty, and
d is measured with an uncertainty σ = 15 punti.
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Analysis of ball and ramp data
What is the correct law that relates d and h?

Try different hypotheses:
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Summary of ball-and-ramp analysis

Clearly the best fit suggests d ~ h½, and this is exactly what 
Newton’s laws predict! 
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Using LS to combine measurements

= E[yi] for all i
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Combining correlated measurements with LS
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Example: averaging two correlated measurements
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Negative weights in LS average
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Extra slides
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Finding LS estimators numerically
Start at a given point in the parameter space and move around 
according to some strategy to find the point where χ2(θ) is a 
minimum.  

For example, alternate 
minimizing with respect 
to each component of θ:

Siegmund Brandt, Data Analysis: Sta7s7cal and Computa7onal 
Methods for Scien7sts and Engineers 4th ed., Springer 2014

starting point
minimum

θi

θj

Many strategies possible,
e.g., steepest descent,
conjugate gradients, ...
(see Brandt Ch. 10).
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Fitting the parameters with Python
The routine routine curve_fit from scipy.optimize can 
find LS estimators numerically.   To use it you need:

We need to define the fit function μ (x; θ), e.g., a straight line:
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The data values (xi, yi, σi) need to be in the form of NumPy
arrays, e.g,

Start values of the parameters can be specified: 

To find the parameter values that minimize χ2(θ), call curve_fit:

Returns estimators and covariance matrix as NumPy arrays.

Need absolute_sigma=True for the fit errors (cov. matrix) to have
desired interpretation.

Fitting the parameters with Python (2)


