Statistical Data Analysis 2020/21 Lecture Week 9

London Postgraduate Lectures on Particle Physics University of London MSc/MSci course PH4515

Glen Cowan

Physics Department

Royal Holloway, University of London
g.cowan@rhul.ac.uk

www.pp.rhul.ac.uk/~cowan

Course web page via RHUL moodle (PH4515) and also

www.pp.rhul.ac.uk/~cowan/stat_course.html

Statistical Data Analysis Lecture 9-1

Least squares with histogram data

LS with histogram data

The fit function in an LS fit is not a pdf, but it could be proportional to one, e.g., when we fit the "envelope" of a histogram.

Suppose for example, we have an i.i.d. data sample of n values $x_1,...,x_n$ sampled from a pdf $f(x;\theta)$. Goal is to estimate θ .

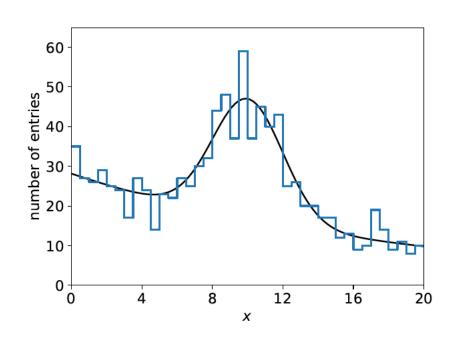
Instead of using all n values, put them in a histogram with N bins, i.e., y_i = number of entries in bin i: $\mathbf{y} = (y_1, ..., y_N)$.

The model predicts mean values:

$$E[y_i] = \mu_i(m{ heta})$$

$$= n \int_{\mathrm{bin}\,i} f(x;m{ heta})\,dx$$

$$pprox nf(x_i;m{ heta})\,\Delta x$$
 bin centre bin widtl



LS with histogram data (2)

The usual models:

for fixed sample size n, take $y \sim$ multinomial, if n not fixed, $y_i \sim$ Poisson(μ_i)

Suppose that the expected number of entries in each μ_i are all $\gg 1$ and probability to be in any individual bin $p_i \ll 1$, one can show

 $\rightarrow y_i$ indep. and \sim Gauss with $\sigma_i \approx \sqrt{\mu_i}$. ($\rightarrow \sigma_i$ depends on θ).

The (log-) likelihood functions are then

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma_i(\boldsymbol{\theta})} e^{-(y_i - \mu_i(\boldsymbol{\theta}))^2/2\sigma_i^2(\boldsymbol{\theta})}$$

$$\ln L(\boldsymbol{\theta}) = -\frac{1}{2} \sum_{i=1}^{N} \frac{(y_i - \mu_i(\boldsymbol{\theta}))^2}{\sigma_i(\boldsymbol{\theta})^2} - \sum_{i=1}^{N} \ln \sigma_i(\boldsymbol{\theta}) + C$$

LS with histogram data (3)

Still define the least-squares estimators to minimize

$$\chi^{2}(\boldsymbol{\theta}) = \sum_{i=1}^{N} \frac{(y_{i} - \mu_{i}(\boldsymbol{\theta}))^{2}}{\sigma_{i}(\boldsymbol{\theta})^{2}}$$

No longer equivalent to maximum likelihood (equal for $\mu_i \gg 1$).

Two possibilities for σ_i :

$$\sigma_i = \sqrt{\mu_i(\boldsymbol{\theta})}$$
 (LS method)
$$\sigma_i = \sqrt{y_i}$$
 (Modified LS method)

Modified LS can be easier computationally but not defined if any $y_i = 0$.

For either method, $\chi^2_{\min} \sim \text{chi-square pdf for } \mu_i \gg 1$, but this breaks down for when the μ_i are not large.

LS with histogram data — normalization

Do not "fit" the normalization, i.e., $n \rightarrow$ free parameter v:

$$\mu_i(\boldsymbol{\theta}, \nu) = \nu \int_{\text{bin } i} f(x; \boldsymbol{\theta}) dx$$

If you do this, one finds the LS estimator for v is not n, but rather

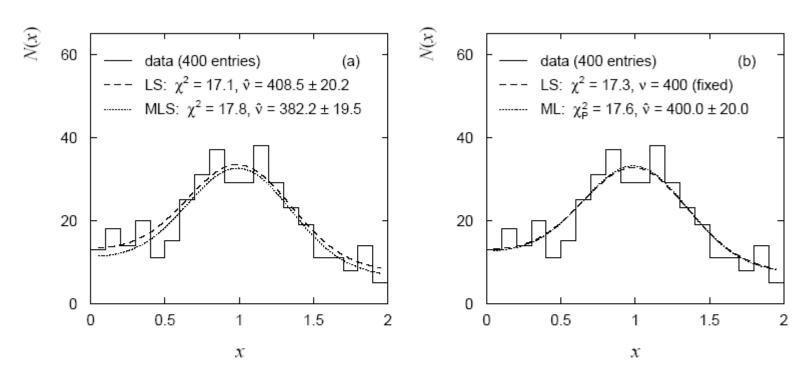
$$\hat{\nu}_{\rm LS} = n + \frac{\chi_{\rm min}^2}{2}$$

$$\hat{\nu}_{\text{MLS}} = n - \chi_{\text{min}}^2$$

Software may include adjustable normalization parameter as default; better to use known n.

LS normalization example

Example with n = 400 entries, N = 20 bins:



Expect χ^2_{\min} around N-m,

 \rightarrow relative error in $\hat{\nu}$ large when N large, n small

Either get n directly from data for LS (or better, use ML).

Statistical Data Analysis Lecture 9-2

- Goodness-of-fit from the likelihood ratio
- Wilks' theorem
- MLE and goodness-of-fit all in one

Goodness of fit from the likelihood ratio

Suppose we model data using a likelihood $L(\mu)$ that depends on N parameters $\mu = (\mu_1, ..., \mu_N)$. Define the statistic

$$t_{\mu} = -2\ln\frac{L(\mu)}{L(\hat{\mu})}$$

where $\hat{\mu}$ is the ML estimator for μ . Value of t_{μ} reflects agreement between hypothesized μ and the data.

Good agreement means $\mu \approx \hat{\mu}$, so t_{μ} is small;

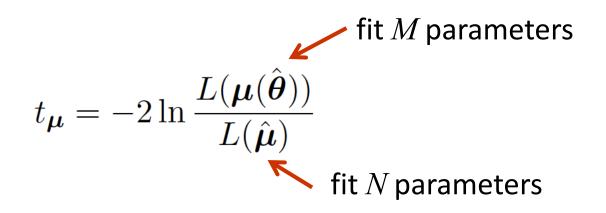
Larger t_u means less compatibility between data and μ .

Quantify "goodness of fit" with
$$p$$
-value: $p_{\mu}=\int_{t_{\mu,{
m obs}}}^{\infty}f(t_{\mu}|\mu)\,dt_{\mu}$ need this pdf

Likelihood ratio (2)

Now suppose the parameters $\mu = (\mu_1, ..., \mu_N)$ can be determined by another set of parameters $\theta = (\theta_1, ..., \theta_M)$, with M < N.

Want to test hypothesis that the true model is somewhere in the subspace $\mu = \mu(\theta)$ versus the alternative of the full parameter space μ . Generalize the LR test statistic to be



To get p-value, need pdf $f(t_{\mu}|\mu(\theta))$.

Wilks' Theorem

Wilks' Theorem: if the hypothesized $\mu_i(\theta)$, i=1,...,N, are true for some choice of the parameters $\theta=(\theta_1,...,\theta_M)$, then in the large sample limit (and provided regularity conditions are satisfied)

$$t_{\pmb{\mu}} = -2\ln\frac{L(\pmb{\mu}(\hat{\pmb{\theta}}))}{L(\hat{\pmb{\mu}})} \qquad \text{follows a chi-square distribution for} \\ N-M \text{ degrees of freedom.} \\ \text{MLE of } (\mu_1,...,\mu_N)$$

The regularity conditions include: the model in the numerator of the likelihood ratio is "nested" within the one in the denominator, i.e., $\mu(\theta)$ is a special case of $\mu = (\mu_1, ..., \mu_N)$.

Proof boils down to having all estimators ~ Gaussian.

S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Statist. 9 (1938) 60-2.

Goodness of fit with Gaussian data

Suppose the data are N independent Gaussian distributed values:

$$y_i \sim \mathrm{Gauss}(\mu_i, \sigma_i) \;, \qquad i = 1, \dots, N$$
 want to estimate known

N measurements and N parameters (= "saturated model")

Likelihood:
$$L(\mu) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma_i} e^{-(y_i - \mu_i)^2/2\sigma_i^2}$$

Log-likelihood:
$$\ln L(\boldsymbol{\mu}) = -\frac{1}{2} \sum_{i=1}^N \frac{(y_i - \mu_i)^2}{\sigma_i^2} + C$$

ML estimators:
$$\hat{\mu}_i = y_i$$
 $i=1,\ldots,N$

Likelihood ratio for Gaussian data

Now suppose $\mu = \mu(\theta)$, e.g., in an LS fit with $\mu_i(\theta) = \mu(x_i; \theta)$.

The goodness-of-fit statistic for the test of the hypothesis $\mu(\theta)$ becomes

$$t_{\boldsymbol{\mu}} = -2\ln\frac{L(\boldsymbol{\mu}(\hat{\boldsymbol{\theta}}))}{L(\hat{\boldsymbol{\mu}})} = \sum_{i=1}^{N} \frac{(y_i - \mu_i(\hat{\boldsymbol{\theta}}))^2}{\sigma_i^2} \sim \chi_{N-M}^2$$

chi-square pdf for N-M degrees of freedom

Here t_{μ} is the same as χ^2_{\min} from an LS fit.

So Wilks' theorem formally states the property that we claimed for the minimized chi-squared from an LS fit with N measurements and M fitted parameters.

Likelihood ratio for Poisson data

Suppose the data are a set of values $n = (n_1, ..., n_N)$, e.g., the numbers of events in a histogram with N bins.

Assume $n_i \sim \text{Poisson}(v_i)$, i = 1,..., N, all independent.

First (for LR denominator) treat $v = (v_1, ..., v_N)$ as all adjustable:

Likelihood:
$$L(oldsymbol{
u}) = \prod_{i=1}^N rac{
u_i^{n_i}}{n_i!} e^{-
u_i}$$

Log-likelihood:
$$\ln L(oldsymbol{
u}) = \sum_{i=1}^N \left[n_i \ln
u_i -
u_i \right] + C$$

ML estimators:
$$\hat{\nu}_i = n_i$$
 , $i = 1, \ldots, N$

Goodness of fit with Poisson data (2)

For LR numerator find $v(\theta)$ with M fitted parameters $\theta = (\theta_1, ..., \theta_M)$:

$$t_{\nu} = -2\ln\frac{L(\nu(\hat{\boldsymbol{\theta}}))}{L(\hat{\boldsymbol{\nu}})} = -2\sum_{i=1}^{N} \left[n_i \ln\frac{\nu_i(\hat{\boldsymbol{\theta}})}{n_i} - \nu_i(\hat{\boldsymbol{\theta}}) + n_i \right]$$

Wilks' theorem: in large-sample limit $t_{m
u} \sim \chi^2_{N-M}$

Exact in large sample limit; in practice good approximation for surprisingly small n_i (~several).

As before use t_v to get p-value of $v(\theta)$,

independent of
$$m{ heta}$$

$$p_{m{
u}}=\int_{t_{m{
u}},{\rm obs}}^{\infty}f(t_{m{
u}}|m{
u}(m{ heta}))\,dt_{m{
u}}=1-F_{\chi^2}(t_{m{
u},{\rm obs}};N-M)$$

Goodness of fit with multinomial data

Similar if data $\mathbf{n} = (n_1, ..., n_N)$ follow multinomial distribution:

$$P(\mathbf{n}|\mathbf{p}, n_{\text{tot}}) = \frac{n_{\text{tot}}!}{n_1! n_2! \dots n_N!} p_1^{n_1} p_2^{n_2} \dots p_N^{n_N}$$

E.g. histogram with N bins but fix: $n_{tot} = \sum_{i=1}^{N} n_i$

Log-likelihood:
$$\ln L(\nu) = \sum_{i=1}^N n_i \ln \frac{\nu_i}{n_{\mathrm{tot}}} + C$$
 $(\nu_i = p_i n_{\mathrm{tot}})$

ML estimators: $\hat{\nu}_i = n_i$ (Only N-1 independent; one is $n_{\rm tot}$ minus sum of rest.)

Goodness of fit with multinomial data (2)

The likelihood ratio statistics become:

$$t_{\nu} = -2\ln\frac{L(\nu(\hat{\boldsymbol{\theta}}))}{L(\hat{\boldsymbol{\nu}})} = -2\sum_{i=1}^{N} n_i \ln\frac{\nu_i(\hat{\boldsymbol{\theta}})}{n_i}$$

Wilks: in large sample limit $t_{m
u} \sim \chi^2_{N-M-1}$

One less degree of freedom than in Poisson case because effectively only N-1 parameters fitted in denominator of LR.

Estimators and g.o.f. all at once

Evaluate numerators with θ (not its estimator); if any n_i = 0, omit the corresponding log terms:

$$\chi_{\mathrm{P}}^2(\boldsymbol{\theta}) = -2\sum_{i=1}^N \left[n_i \ln \frac{\nu_i(\boldsymbol{\theta})}{n_i} - \nu_i(\boldsymbol{\theta}) + n_i \right]$$
 (Poisson)

$$\chi_{\mathrm{M}}^{2}(\theta) = -2\sum_{i=1}^{N} n_{i} \ln \frac{\nu_{i}(\theta)}{n_{i}}$$
 (Multinomial)

These are equal to the corresponding $-2 \ln L(\theta)$ plus terms not depending on θ , so minimizing them gives the usual ML estimators for θ .

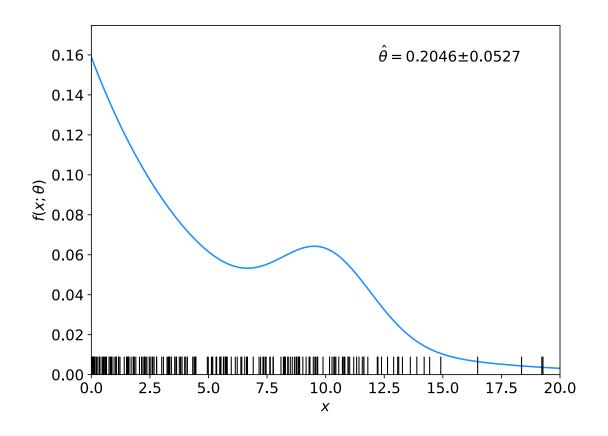
The minimized value gives the statistic t_v , so we get goodness-of-fit for free.

Steve Baker and Robert D. Cousins, Clarification of the use of the chi-square and likelihood functions in fits to histograms, NIM 221 (1984) 437.

Examples of ML/LS fits

Unbinned maximum likelihood (mlFit.py, minimize negLogL)

$$\ln L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \ln f(x_i; \boldsymbol{\theta})$$

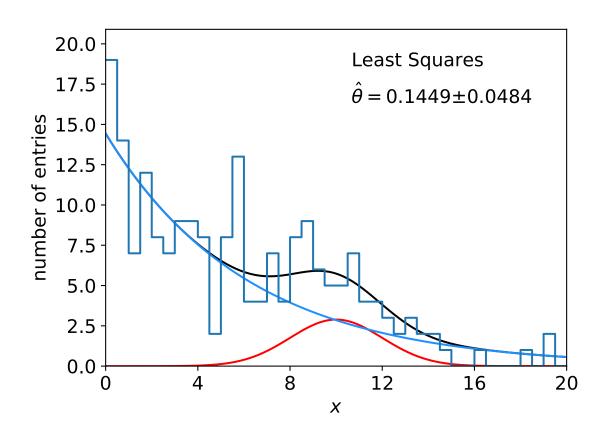


No useful measure of goodness-of-fit from unbinned ML.

Examples of ML/LS fits

Least Squares fit (histFit.py, minimize chi2LS)

$$\chi^{2}(\boldsymbol{\theta}) = \sum_{i=1}^{N} \frac{(y_{i} - \mu_{i}(\boldsymbol{\theta}))^{2}}{\mu_{i}(\boldsymbol{\theta})}$$



$$\chi^2_{\min} = 32.7$$

$$n_{\text{dof}} = 38$$

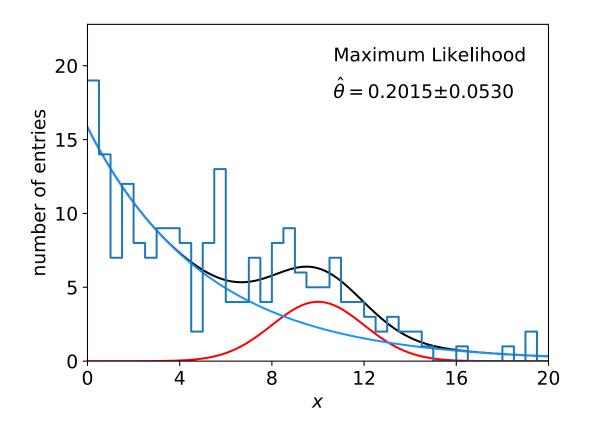
$$p = 0.71$$

Many bins with few entries, LS not expected to be reliable.

Examples of ML/LS fits

Multinomial maximum likelihood fit (histFit.py, minimize chi2M)

$$\chi_{\mathrm{M}}^{2}(\boldsymbol{\theta}) = -2\sum_{i=1}^{N} n_{i} \ln \frac{\nu_{i}(\boldsymbol{\theta})}{n_{i}}$$



$$\chi^2_{\min} = 35.3$$

$$n_{\text{dof}} = 37$$

$$p = 0.55$$

Essentially same result as unbinned ML.

Statistical Data Analysis Lecture 9-3

- Interval estimation
- Confidence interval from inverting a test
- Example: limits on mean of Gaussian

Confidence intervals by inverting a test

In addition to a 'point estimate' of a parameter we should report an interval reflecting its statistical uncertainty.

Confidence intervals for a parameter θ can be found by defining a test of the hypothesized value θ (do this for all θ):

Specify values of the data that are 'disfavoured' by θ (critical region) such that $P(\text{data in critical region} | \theta) \leq \alpha$ for a prespecified α , e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value θ .

Now invert the test to define a confidence interval as:

set of θ values that are not rejected in a test of size α (confidence level CL is $1-\alpha$).

Relation between confidence interval and p-value

Equivalently we can consider a significance test for each hypothesized value of θ , resulting in a p-value, p_{θ} .

If $p_{\theta} \leq \alpha$, then we reject θ .

The confidence interval at $CL = 1 - \alpha$ consists of those values of θ that are not rejected.

E.g. an upper limit on θ is the greatest value for which $p_{\theta} > \alpha$.

In practice find by setting $p_{\theta} = \alpha$ and solve for θ .

For a multidimensional parameter space $\theta = (\theta_1, \dots \theta_M)$ use same idea – result is a confidence "region" with boundary determined by $p_{\theta} = \alpha$.

Coverage probability of confidence interval

If the true value of θ is rejected, then it's not in the confidence interval. The probability for this is by construction (equality for continuous data):

$$P(\text{reject }\theta | \theta) \leq \alpha = \text{type-I error rate}$$

Therefore, the probability for the interval to contain or "cover" θ is

$$P(\text{conf. interval "covers" }\theta | \theta) \ge 1 - \alpha$$

This assumes that the set of θ values considered includes the true value, i.e., it assumes the composite hypothesis $P(x|H,\theta)$.

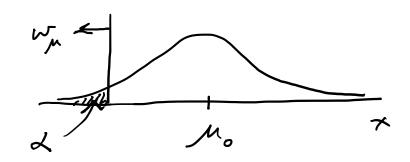
Example: upper limit on mean of Gaussian

When we test the parameter, we should take the critical region to maximize the power with respect to the relevant alternative(s).

Example: $x \sim \text{Gauss}(\mu, \sigma)$ (take σ known)

Test $H_0: \mu = \mu_0$ versus the alternative $H_1: \mu < \mu_0$

 \rightarrow Put w_{μ} at region of x-space characteristic of low μ (i.e. at low x)

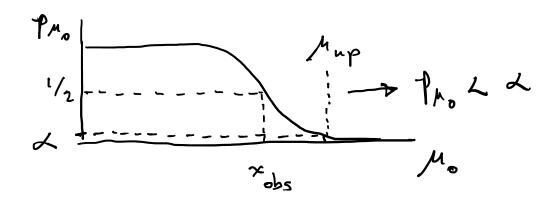


Equivalently, take the *p*-value to be

$$p_{\mu_0} = P(x \le x_{\text{obs}} | \mu_0) = \int_{-\infty}^{x_{\text{obs}}} \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu_0)^2/2\sigma^2} dx = \Phi\left(\frac{x_{\text{obs}} - \mu_0}{\sigma}\right)$$

Upper limit on Gaussian mean (2)

To find confidence interval, repeat for all μ_0 , i.e., set $p_{\mu 0} = \alpha$ and solve for μ_0 to find the interval's boundary



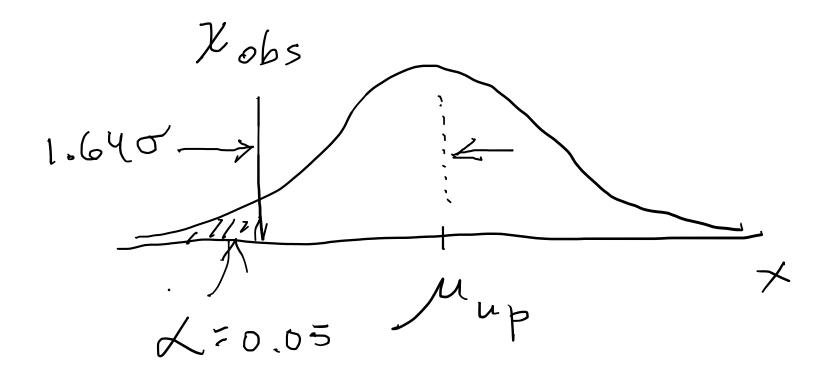
$$\mu_0 \to \mu_{\rm up} = x_{\rm obs} - \sigma \Phi^{-1}(\alpha) = x_{\rm obs} + \sigma \Phi^{-1}(1 - \alpha)$$

This is an upper limit on μ , i.e., higher μ have even lower p-value and are in even worse agreement with the data.

Usually use $\Phi^{-1}(\alpha) = -\Phi^{-1}(1-\alpha)$ so as to express the upper limit as $x_{\rm obs}$ plus a positive quantity. E.g. for α = 0.05, $\Phi^{-1}(1-0.05)$ = 1.64.

Upper limit on Gaussian mean (3)

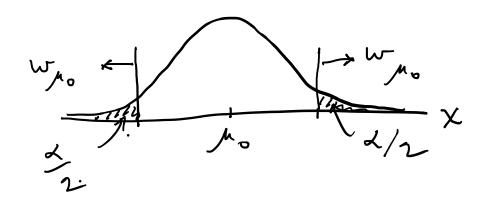
 $\mu_{\rm up}$ = the hypothetical value of μ such that there is only a probability α to find $x < x_{\rm obs}$.



1- vs. 2-sided intervals

Now test: $H_0: \mu = \mu_0$ versus the alternative $H_1: \mu \neq \mu_0$

I.e. we consider the alternative to μ_0 to include higher and lower values, so take critical region on both sides:



Result is a "central" confidence interval [μ_{lo} , μ_{up}]:

$$\mu_{\rm lo} = x_{\rm obs} - \sigma \Phi^{-1} \left(1 - \frac{\alpha}{2} \right)$$

$$\mu_{\rm up} = x_{\rm obs} + \sigma \Phi^{-1} \left(1 - \frac{\alpha}{2} \right)$$

E.g. for
$$\alpha = 0.05$$

$$\Phi^{-1}\left(1 - \frac{\alpha}{2}\right) = 1.96 \approx 2$$

Note upper edge of two-sided interval is higher (i.e. not as tight of a limit) than obtained from the one-sided test.

On the meaning of a confidence interval

Often we report the confidence interval [a,b] together with the point estimate as an "asymmetric error bar", e.g.,

E.g. (at CL =
$$1 - \alpha = 68.3\%$$
): $6 = 80.25 + 0.31$

Does this mean $P(80.00 < \theta < 80.56) = 68.3\%$? No, not for a frequentist confidence interval. The parameter θ does not fluctuate upon repetition of the measurement; the endpoints of the interval do, i.e., the endpoints of the interval fluctuate (they are functions of data):

P(alx) L 0 L b(x)) = 1 - x

Statistical Data Analysis Lecture 9-4

Confidence intervals from the likelihood function

Approximate confidence intervals/regions from the likelihood function

Suppose we test parameter value(s) $\theta = (\theta_1, ..., \theta_n)$ using the ratio

$$\lambda(\theta) = \frac{L(\theta)}{L(\hat{\theta})} \qquad 0 \le \lambda(\theta) \le 1$$

Lower $\lambda(\theta)$ means worse agreement between data and hypothesized θ . Equivalently, usually define

$$t_{\theta} = -2 \ln \lambda(\theta)$$

so higher t_{θ} means worse agreement between θ and the data.

$$p$$
-value of θ therefore

$$p_{m{ heta}} = \int_{t_{m{ heta}, ext{obs}}}^{\infty} f(t_{m{ heta}} | m{ heta}) \, dt_{m{ heta}}$$
 need pdf

Confidence region from Wilks' theorem

Wilks' theorem says (in large-sample limit and provided certain conditions hold...)

$$f(t_{\theta}|\theta) \sim \chi_n^2$$

chi-square dist. with # d.o.f. = # of components in $\theta = (\theta_1, ..., \theta_n)$.

Assuming this holds, the p-value is

$$p_{\theta} = 1 - F_{\chi_n^2}(t_{\theta}) \quad \leftarrow \text{set equal to } \alpha$$

To find boundary of confidence region set $p_{\theta} = \alpha$ and solve for t_{θ} :

$$t_{\theta} = F_{\chi_n^2}^{-1} (1 - \alpha)$$

$$t_{\theta} = -2\ln\frac{L(\theta)}{L(\hat{\theta})}$$

Confidence region from Wilks' theorem (cont.)

i.e., boundary of confidence region in θ space is where

$$\ln L(\theta) = \ln L(\hat{\theta}) - \frac{1}{2} F_{\chi_n^2}^{-1} (1 - \alpha)$$

For example, for $1 - \alpha = 68.3\%$ and n = 1 parameter,

$$F_{\chi_1^2}^{-1}(0.683) = 1$$

and so the 68.3% confidence level interval is determined by

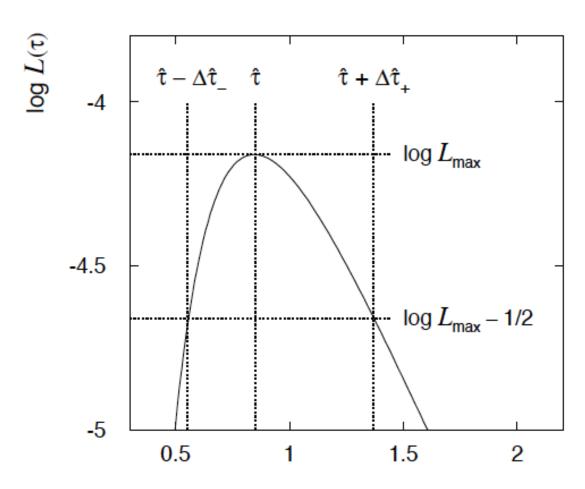
$$\ln L(\theta) = \ln L(\hat{\theta}) - \frac{1}{2}$$

Same as recipe for finding the estimator's standard deviation, i.e.,

$$[\hat{\theta} - \sigma_{\hat{\theta}}, \hat{\theta} + \sigma_{\hat{\theta}}]$$
 is a 68.3% CL confidence interval.

Example of interval from $\ln L(\theta)$

For n=1 parameter, CL = 0.683, $Q_{\alpha} = 1$.



Our exponential example, now with only n = 5 events.

Can report ML estimate with approx. confidence interval from $\ln L_{\rm max} - 1/2$ as "asymmetric error bar":

$$\hat{\tau} = 0.85^{+0.52}_{-0.30}$$

Multiparameter case

For increasing number of parameters, $CL = 1 - \alpha$ decreases for confidence region determined by a given

$$Q_{\alpha} = F_{\chi_n^2}^{-1}(1 - \alpha)$$

Q_{lpha}	$1-\alpha$						
	n = 1	n=2	n = 3	n=4	n = 5		
1.0	0.683	0.393	0.199	0.090	0.037		
2.0	0.843	0.632	0.428	0.264	0.151		
4.0	0.954	0.865	0.739	0.594	0.451		
9.0	0.997	0.989	0.971	0.939	0.891		

Multiparameter case (cont.)

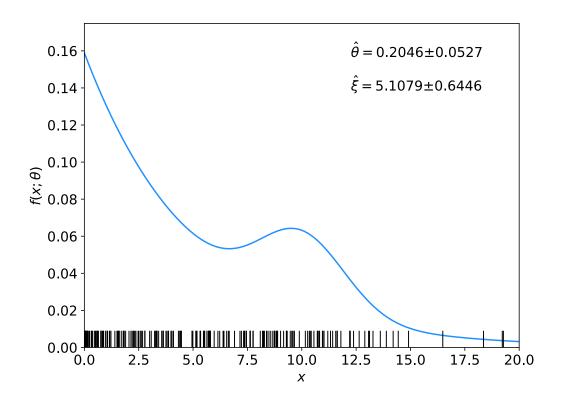
Equivalently, Q_{α} increases with n for a given $CL = 1 - \alpha$.

1 0	$ar{Q}_{lpha}$						
$1-\alpha$	n = 1	n = 2	n = 3	n=4	n = 5		
0.683	1.00	2.30	3.53	4.72	5.89		
0.90	2.71	4.61	6.25	7.78	9.24		
0.95	3.84	5.99	7.82	9.49	11.1		
0.99	6.63	9.21	11.3	13.3	15.1		

Example: 2 parameter fit:

Example from problem sheet 8, i.i.d. sample of size 200

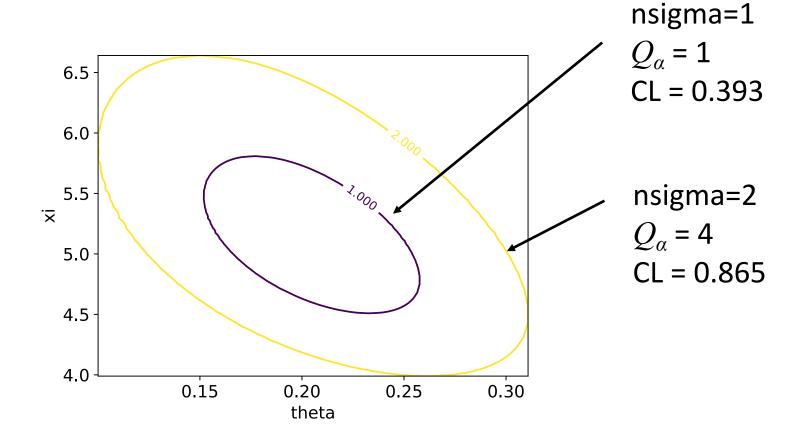
$$x \sim f(x; \theta, \xi) = \theta \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} + (1-\theta)\frac{1}{\xi} e^{-x/\xi}$$



Here fit two parameters: θ and ξ .

Example: 2 parameter fit:

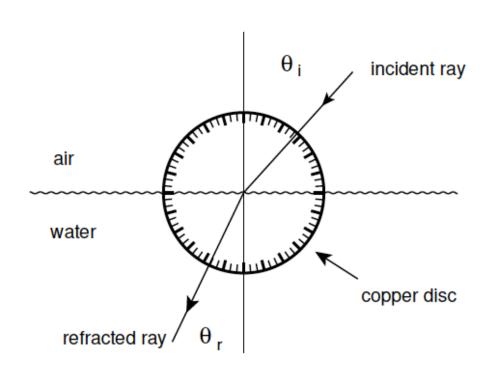
In iminuit, user can set nsigma = $\sqrt{Q_{\alpha}}$



Extra slides

LS example: refraction data from Ptolemy

Astronomer Claudius Ptolemy obtained data on refraction of light by water in around 140 A.D.:



Angles of incidence and refraction (degrees)

$ heta_{ m r}$
8
$15\frac{1}{2}$
$22\frac{1}{2}$
29
35
$40\frac{1}{2}$
$45\frac{1}{2}$
50

Suppose the angle of incidence is set with negligible error, and the measured angle of refraction has a standard deviation of $\frac{1}{2}$ °

Laws of refraction

A commonly used law of refraction was

$$\theta_{\rm r} = \alpha \theta_{\rm i}$$

although it is reported that Ptolemy preferred

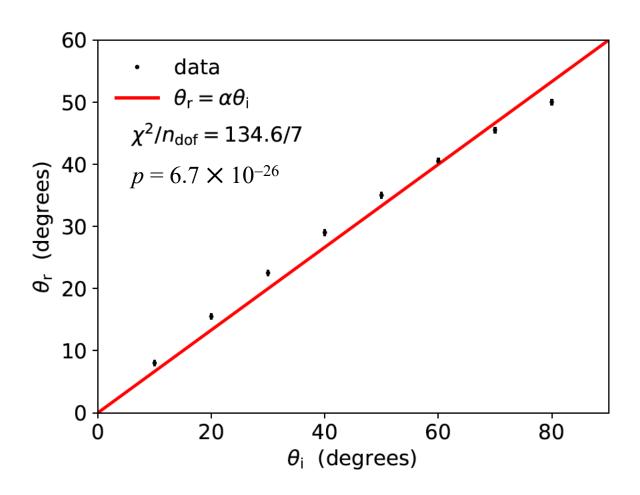
$$\theta_{\rm r} = \alpha \theta_{\rm i} - \beta \theta_{\rm i}^2 .$$

The law of refraction discovered by Ibn Sahl in 984 (and rediscovered by Snell in 1621) is

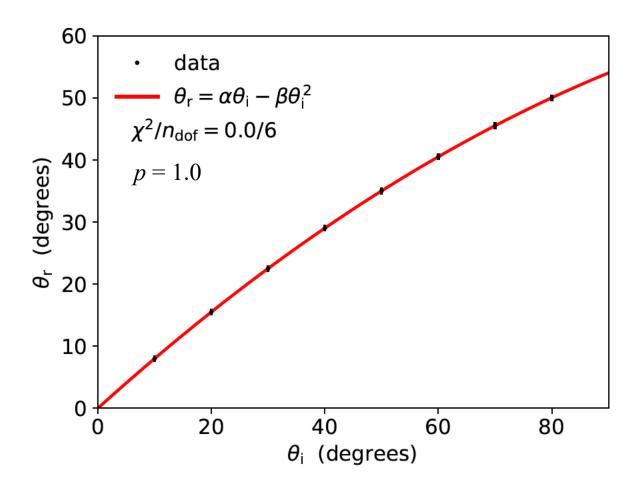
$$\theta_{\rm r} = \sin^{-1} \left(\frac{\sin \theta_{\rm i}}{r} \right)$$

where $r = n_r/n_i$ is the ratio of indices of refraction of the two media.

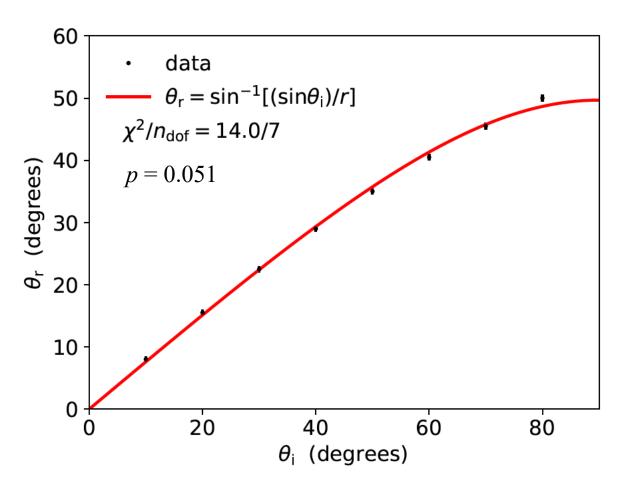
LS fit: $\theta_{\rm r} = \alpha \theta_{\rm i}$



LS fit: $\theta_{\rm r} = \alpha \theta_{\rm i} - \beta \theta_{\rm i}^2$



LS fit: Snell's Law



Fitted index of refraction of water $r = 1.3116 \pm 0.0056$ found not quite compatible with currently known value 1.330.