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Exercise 4: Consider a likelihood L(x|θ), which gives the probability for the data x given a
parameter θ. The Jeffreys prior for θ is given by

π(θ) ∝
√

I(θ) , (1)

where

I(θ) = −E

[

∂2 lnL

∂θ2

]

(2)

is the expected Fisher Information.

(a) Show that

−E

[

∂2 lnL

∂θ2

]

= E

[

(

∂ lnL

∂θ

)2
]

, (3)

providing that the set of the allowed values of x does not depend on θ.

Hint: Write the right-hand side of (3) as

E

[

(

∂ lnL

∂θ

)2
]

=

∫

[

∂

∂θ

(

L
∂ lnL

∂θ

)

− L
∂2 lnL

∂θ2

]

dx (4)

and use the fact that one can bring the derivative ∂/∂θ outside of the integral as long as the
region of integration does not depend on θ. Also use the fact the the integral of L(x|θ) over
all x is equal to unity for any θ.

(b) Suppose one uses the Jeffreys prior for θ to obtain the posterior pdf

p(θ|x) ∝ L(x|θ)π(θ) , (5)

Suppose now that one transforms to a new parameter η(θ), such that the posterior pdf for η
is

p(η|x) = p(θ|x)

∣

∣

∣

∣

∂θ

∂η

∣

∣

∣

∣

. (6)

Show that one arrives at the same posterior pdf as (6) by beginning directly from the Jeffreys
prior for η. That is, inference made using the Jeffreys prior is invariant under a parameter
transformation.
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Exercise 5: Consider an experiment where one measures a number of events n, which is
modeled as following a Poisson distribution with mean s+ b, where s and b are the contribu-
tions from signal and background processes, respectively. To constrain the parameter b, one
carries out a control measurement that counts a number of events m, which follows a Poisson
distribution with mean τb, where τ is a known scale factor.

The problem thus contains a single parameter of interest, s, and a nuisance parameter b.
The likelihood can be written

L(n,m|s, b) =
(s+ b)n

n!
e−(s+b) (τb)

m

m!
e−τb , (7)

Show that the Maximum Likelihood (ML) estimators for s and b are

ŝ = n−m/τ , (8)

b̂ = m/τ , (9)

and that the conditional ML estimator for b given s is

ˆ̂
b(s) =

m+ n− (1 + τ)s+
√

(m+ n− (1 + τ)s)2 + 4(1 + τ)ms

2(1 + τ)
. (10)

The quantities ŝ, b̂ and
ˆ̂
b are what we require to compute the profile likelihood ratio

λ(s) =
L(s,

ˆ̂
b)

L(ŝ, b̂)
. (11)

(b) Write a Monte Carlo program that generates values of n and m according to hypothesized
values of s and b (e.g., use b = 20, τ = 1 and s = 0) and use these to evaluate the profile
likelihood ratio. (See the program runSigCalc_MC.cc on the course webpage for examples
of how to generate Poisson distributed values by using the ROOT class TRandom3.)

To carry out a test of s = 0, we can use the statistic

q0 =







−2 lnλ(0) ŝ ≥ 0 ,

0 ŝ < 0 .
(12)

Generate the distribution of q0 assuming s = 0, b = 20 and τ = 1. In the large sample
limit, this should approach a “half-chi-square” distribution for one degree of freedom (a delta
function at zero plus a chi-square distribution, each with a weight of one half). Check to
what extent this holds for different values of b (e.g., b = 2, 20, 200).

(c) Extend the Monte Carlo program from (b) to compute the distribution of q0 by generating
data with a nonzero value of s, e.g., take b = 20, τ = 1, s = 10. Find the median value of q0
under assumption of this value of s, and thus find the median discovery significance for this
s (i.e., the discovery sensitivity). Compare this to the value based on the Asimov data set,

med[Z0|s, b] ≈
√

2 ((s+ b) ln(1 + s/b)− s) . (13)
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