Glen Cowan RHUL Physics 15 December, 2011

Statistics Problems for the NIKHEF Onderzoekschool Subatomaire Fysica (part 3)

Exercise 6: Consider a measured value x that follows a Gaussian distribution with a mean μ and standard deviation σ . Suppose we know σ exactly and that $\mu \ge 0$, and the goal is to set an upper limit on μ given an observed value of x.

(a) Make a sketch of the distributions of x assuming $\mu = 0$ and also assuming some nonzero value of μ . Suppose one has an observed value of x that lies somewhere between 0 and μ . Indicate on the sketch the p-values of μ and of $\mu = 0$ (p_0 and p_{μ}).

(b) Write down the *p*-values for μ and $\mu = 0$, p_{μ} and p_0 , as functions of x in terms of the standard normal cumulative distribution Φ .

(c) Suppose we want to construct an upper limit for μ at a confidence level $1 - \alpha$. Recall this is done by equating the *p*-value for μ equal to α and solving for μ . By doing this with the p_{μ} found in (b), show that the upper limit for μ is

$$\mu_{\rm up} = x + \sigma \Phi^{-1} (1 - \alpha) , \qquad (1)$$

where as usual Φ^{-1} is the standard normal quantile.

(d) In the CL_s procedure, a value of μ is excluded if

$$p'_{\mu} = \frac{p_{\mu}}{1 - p_0} \tag{2}$$

is found less than a given value α . By using the *p*-values from (b), show that this leads to the upper limit

$$\mu_{\rm up} = x + \sigma \Phi^{-1} \left(1 - \alpha \Phi \left(\frac{x}{\sigma} \right) \right) \,. \tag{3}$$

(e) Consider the Bayesian approach to this problem and take a flat prior pdf μ , i.e.,

$$\pi(\mu) = \begin{cases} 1 & \mu \ge 0 ,\\ 0 & \text{otherwise} . \end{cases}$$
(4)

Find the posterior pdf $p(\mu|x)$, and by requiring

$$1 - \alpha = \int_{-\infty}^{\mu_{\rm up}} p(\mu|x) \, d\mu \tag{5}$$

show that for this problem one obtains the same upper limit as what was found using the CL_s method, namely,

$$\mu_{\rm up} = x + \sigma \Phi^{-1} \left(1 - \alpha \Phi \left(\frac{x}{\sigma} \right) \right) \,. \tag{6}$$