
Computing and Statistical Data Analysis
Problem sheet 2

Remember to write your name, College and degree programme (e.g., PhD, MSci or MSc) on
your paper.

Please turn in a copy of the source code and relevant sample output. Avoid unnecessarily
complicated code. Highest marks go to a simple, elegant, robust solution. If you choose to do
something complicated (e.g., fancy error checking), then the complexity should buy meaningful
additional functionality or robustness.

1: Starting from the algorithm you created to compute factorials in Problem Sheet 1, write
a function called factorial that takes a single int argument and returns the factorial as a
double. Note that the error checking, e.g., for non-negative integer input, must now be put
inside the body of the function.

Put the function in a separate file factorial.cc and put the prototype in a header file
factorial.h with the appropriate “include guards”.

Write a short main program to test your function (i.e., similar to the program from Problem
Sheet 1).

Write a short shell script called, say, build.sh to compile and link the program.

Show sample output for a few values of the input value, e.g., n = 10, 40, 80.

Overload the factorial function so that it can also take an argument of type double, which
also returns double. Illustrate the use of the function in the main program. (Hint: remember
the “once and only once” principle.) The function definitions and prototypes can go into the
same files as for the original.

2: Write a program that computes a table of values of n,
√

n, lnn and n! for n = 1, 2, . . . nmax,
where the value nmax is set by the user through a cin statement. Using the techniques shown
in the lecture, display the result on the monitor formatted such that the value of n appears as
an integer in a column with 5 spaces, the values of

√

n and lnn appears as decimal values with
12 total spaces and five places to the right of the decimal point, and the value of n! is given in
scientific notation with five digits to the right of the decimal place.

Then using the methods described in the lectures, also write the table of numbers to an output
file. Create the file for nmax = 20.

3: Write a function swap(x,y) of return type void which takes two int arguments passed by
reference, such that the values of x and y are swapped after calling the function. Write a short
test program which calls swap to test and illustrate its use.

G. Cowan
10 October, 2011


