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Testing significance / goodness-of-fit 
Suppose hypothesis H predicts pdf  
observations 

for a set of 

We observe a single point in this space: 

What can we say about the validity of H in light of the data? 

Decide what part of the  
data space represents less  
compatibility with H than  
does the point       less  

compatible 
with H 

     more  
compatible 
with H 

(Not unique!) 
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p-values 

where π(H) is the prior probability for H. 

Express ‘goodness-of-fit’ by giving the p-value for H: 

p = probability, under assumption of H, to observe data with  
equal or lesser compatibility with H relative to the data we got.  

This is not the probability that H is true! 

In frequentist statistics we don’t talk about P(H) (unless H  
represents a repeatable observation). In Bayesian statistics we do;  
use Bayes’ theorem to obtain 

For now stick with the frequentist approach;  
result is p-value, regrettably easy to misinterpret as P(H). 
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Distribution of  the p-value 
The p-value is a function of the data, and is thus itself a random 
variable with a given distribution.  Suppose the p-value of H is  
found from a test statistic t(x) as 

Statistical Data Analysis / Stat 3 

The pdf of pH under assumption of H is 

In general for continuous data,  under  
assumption of H, pH ~ Uniform[0,1] 
and is concentrated toward zero for  
Some (broad) class of alternatives. pH 

g(pH|H) 

0 1 

g(pH|H′) 
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Using a p-value to define test of H0 

So the probability to find the p-value of H0, p0, less than α  is 

Statistical Data Analysis / Stat 3 

We started by defining critical region in the original data 
space (x), then reformulated this in terms of a scalar test  
statistic t(x). 

We can take this one step further and define the critical region  
of a test of H0 with size α  as the set of data space where p0 ≤ α . 

Formally the p-value relates only to H0, but the resulting test will 
have a given power with respect to a given alternative H1. 
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p-value example:  testing whether a coin is ‘fair’ 

i.e. p = 0.0026 is the probability of obtaining such a bizarre 
result (or more so) ‘by chance’, under the assumption of H. 

Probability to observe n heads in N coin tosses is binomial: 

Hypothesis H:  the coin is fair (p = 0.5). 

Suppose we toss the coin N = 20 times and get n = 17 heads. 

Region of data space with equal or lesser compatibility with  
H relative to n = 17 is:  n = 17, 18, 19, 20, 0, 1, 2, 3.  Adding 
up the probabilities for these values gives: 
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The Poisson counting experiment 
Suppose we do a counting experiment and observe n events. 

 Events could be from signal process or from background –  
 we only count the total number. 

Poisson model:   

s = mean (i.e., expected) # of signal events 

b = mean # of background events 

Goal is to make inference about s, e.g., 

     test s = 0 (rejecting H0 ≈ “discovery of signal process”) 

     test all non-zero s  (values not rejected =  confidence interval) 

In both cases need to ask what is relevant alternative hypothesis. 
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Poisson counting experiment: discovery p-value 
Suppose b = 0.5 (known), and we observe nobs = 5.   

Should we claim evidence for a new discovery?   

    Give p-value for hypothesis s = 0: 
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Poisson counting experiment: discovery significance 

In fact this tradition should be 
revisited:  p-value intended to 
quantify probability of a signal-
like fluctuation assuming 
background only; not intended to 
cover, e.g., hidden systematics, 
plausibility signal model, 
compatibility of data with signal, 
“look-elsewhere effect”  
(~multiple testing), etc. 

Equivalent significance for p = 1.7 × 10-4:   

Often claim discovery if Z > 5 (p < 2.9 × 10-7, i.e., a “5-sigma effect”) 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 

Statistical Data Analysis / Stat 3 
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The significance of a peak 

Suppose we measure a value  
x for each event and find: 

Each bin (observed) is a 
Poisson r.v., means are 
given by dashed lines. 

In the two bins with the peak, 11 entries found with b = 3.2. 
The p-value for the s = 0 hypothesis is: 
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The significance of a peak (2) 

But... did we know where to look for the peak? 

 →  “look-elsewhere effect”; 
        want probability to find peak at least as significant 
        as the one seen anywhere in the histogram.  

How many bins × distributions have we looked at? 

  → look at a thousand of them, you’ll find a 10-3 effect 

Is the observed width consistent with the expected x resolution? 

 →  take x window several times the expected resolution 

Did we adjust the cuts to ‘enhance’ the peak? 

  → freeze cuts, repeat analysis with new data 

Should we publish???? 
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When to publish (why 5 sigma?) 
HEP folklore is to claim discovery when p = 2.9 × 10-7, 
corresponding to a significance Z = Φ-1 (1 – p) = 5 (a 5σ effect). 

There a number of reasons why one may want to require such 
a high threshold for discovery: 

 The “cost” of announcing a false discovery is high. 

 Unsure about systematic uncertainties in model. 

 Unsure about look-elsewhere effect (multiple testing). 

 The implied signal may be a priori highly improbable 
 (e.g., violation of Lorentz invariance). 

But one should also consider the degree to which the data are 
compatible with the new phenomenon, not only the level of 
disagreement with the null hypothesis; p-value is only first step! 
 

Statistical Data Analysis / Stat 3 
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The primary role of the p-value is to quantify the probability 
that the background-only model gives a statistical fluctuation 
as big as the one seen or bigger. 

It is not intended as a means to protect against hidden systematics 
or the high standard required for a claim of an important discovery. 

In the processes of establishing a discovery there comes a point 
where it is clear that the observation is not simply a fluctuation, 
but an “effect”, and the focus shifts to whether this is new physics 
or a systematic. 

Providing LEE is dealt with, that threshold is probably closer to 
3σ than 5σ. 

Why 5 sigma (cont.)? 
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Pearson’s χ2 statistic 

Test statistic for comparing observed data 
(ni independent) to predicted mean values 

For ni ~ Poisson(νi) we have V[ni] = νi, so this becomes  

(Pearson’s χ2  
statistic) 

χ2 = sum of squares of the deviations of the ith measurement from  
the ith prediction, using σi as the ‘yardstick’ for the comparison. 
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Pearson’s χ2 test 
If ni are Gaussian with mean νi and std. dev. σi, i.e., ni ~ N(νi , σi

2),  
then Pearson’s χ2 will follow the χ2 pdf (here for χ2 = z): 

If the ni are Poisson with νi >> 1 (in practice OK for νi > 5) 
then the Poisson dist. becomes Gaussian and therefore Pearson’s 
χ2 statistic here as well follows the χ2 pdf. 

The χ2 value obtained from the data then gives the p-value: 
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The ‘χ2 per degree of freedom’ 
Recall that for the chi-square pdf for N degrees of freedom, 

This makes sense:  if the hypothesized ni are right, the rms  
deviation of ni from νi is σi, so each term in the sum contributes ~ 1. 

One often sees χ2/N reported as a measure of goodness-of-fit. 
But...  better to give χ2and N separately.  Consider, e.g., 

i.e. for N large, even a χ2 per dof only a bit greater than one can 
imply a small p-value, i.e., poor goodness-of-fit. 
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Pearson’s χ2 with multinomial data 

If  is fixed, then we might model ni ~ binomial  

I.e.  with pi = ni / ntot. ~ multinomial. 

In this case we can take Pearson’s χ2 statistic to be 

If all pi ntot >> 1 then this will follow the chi-square pdf for 
N-1 degrees of freedom. 
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Example of a χ2 test 

← This gives 

for N = 20 dof. 

Now need to find p-value, but... many bins have few (or no) 
entries, so here we do not expect χ2 to follow the chi-square pdf. 
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Using MC to find distribution of χ2 statistic  

The Pearson χ2 statistic still reflects the level of agreement 
between data and prediction, i.e., it is still a ‘valid’ test statistic. 

To find its sampling distribution, simulate the data with a 
Monte Carlo program: 

Here data sample simulated 106 

times.  The fraction of times we  
find χ2 > 29.8 gives the  p-value: 

 p = 0.11 

If we had used the chi-square pdf 
we would find p = 0.073. 
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Parameter estimation 
The parameters of a pdf are constants that characterize 
 its shape, e.g. 

r.v. 

Suppose we have a sample of observed values: 

parameter 

We want to find some function of the data to estimate the  
parameter(s): 

←  estimator written with a hat 

Sometimes we say ‘estimator’ for the function of x1, ..., xn; 
‘estimate’ for the value of the estimator with a particular data set. 
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Properties of estimators 
If we were to repeat the entire measurement, the estimates 
from each would follow a pdf: 

biased large 
variance 

best 

We want small (or zero) bias (systematic error): 
→  average of repeated measurements should tend to true value. 

And we want a small variance (statistical error): 
→  small bias & variance are in general conflicting criteria 
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An estimator for the mean (expectation value) 

Parameter: 

Estimator: 

We find: 

(‘sample mean’) 
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An estimator for the variance 

Parameter: 

Estimator: 

(factor of n-1 makes this so) 

(‘sample 
variance’) 

We find: 

where 



G. Cowan  Statistical Data Analysis / Stat 3 25 

The likelihood function 
Suppose the entire result of an experiment (set of measurements) 
is a collection of numbers x, and suppose the joint pdf for 
the data x is a function that depends on a set of parameters θ: 

Now evaluate this function with the data obtained and 
regard it as a function of the parameter(s).  This is the 
likelihood function: 

(x constant) 
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The likelihood function for i.i.d.*. data 

Consider n independent observations of x:  x1, ..., xn,  where  
x follows f (x; θ).  The joint pdf for the whole data sample is: 

In this case the likelihood function is 

(xi constant) 

* i.i.d. = independent and identically distributed 
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Maximum likelihood estimators 
If the hypothesized θ is close to the true value, then we expect  
a high probability to get data like that which we actually found. 

So we define the maximum likelihood (ML) estimator(s) to be  
the parameter value(s) for which the likelihood is maximum. 

 ML estimators not guaranteed to have any ‘optimal’ 
 properties, (but in practice they’re very good). 



G. Cowan  Statistical Data Analysis / Stat 3 28 

ML example:  parameter of exponential pdf 

Consider exponential pdf, 

and suppose we have i.i.d. data, 

The likelihood function is 

The value of τ for which L(τ) is maximum also gives the  
maximum value of its logarithm (the log-likelihood function): 
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ML example:  parameter of exponential pdf (2) 

Find its maximum by setting  

→ 

Monte Carlo test:   
 generate 50  values 
 using τ = 1: 

 
We find the ML estimate: 
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Functions of ML estimators 

Suppose we had written the exponential pdf as 
i.e., we use λ = 1/τ.  What is the ML estimator for λ? 

For a function α(θ) of a parameter θ, it doesn’t matter 
whether we express L as a function of α or θ. 

The ML estimator of a function α(θ) is simply   

So for the decay constant we have 

Caveat:    is biased, even though is unbiased. 

(bias →0 for n →∞) Can show 
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Example of ML:  parameters of Gaussian pdf 
Consider independent x1, ..., xn,  with xi ~ Gaussian (µ, σ2) 

The log-likelihood function is 
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Example of ML:  parameters of Gaussian pdf (2) 
Set derivatives with respect to µ, σ2 to zero and solve, 

We already know that  the estimator for µ  is unbiased. 

But we find, however, so ML estimator 

for σ2 has a bias, but b→0 for n→∞.  Recall, however, that 

is an unbiased estimator for σ2. 
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Variance of estimators:  Monte Carlo method 
Having estimated our parameter we now need to report its 
‘statistical error’, i.e., how widely distributed would estimates 
be if we were to repeat the entire measurement many times. 

One way to do this would be to simulate the entire experiment 
many times with a Monte Carlo program (use ML estimate for MC). 

For exponential example, from  
sample variance of estimates 
we find: 

Note distribution of estimates is roughly 
Gaussian − (almost) always true for  
ML in large sample limit. 
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Variance of estimators from information inequality 
The information inequality (RCF) sets a lower bound on the  
variance of any estimator (not only ML): 

Often the bias b is small, and equality either holds exactly or 
is a good approximation (e.g. large data sample limit).   Then, 

Estimate this using the 2nd derivative of  ln L at its maximum: 

Minimum Variance 
Bound (MVB)  
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Variance of estimators: graphical method 
Expand ln L (θ) about its maximum: 

First term is ln Lmax, second term is zero, for third term use  
information inequality (assume equality): 

i.e., 

→  to get , change θ away from until ln L decreases by 1/2. 
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Example of variance by graphical method 

ML example with exponential: 

Not quite parabolic ln L since finite sample size (n = 50). 
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Information inequality for N parameters 
Suppose we have estimated N parameters    

The (inverse) minimum variance bound is given by the  
Fisher information matrix: 

The information inequality then states that V - I-1 is a positive 
semi-definite matrix, where                                  Therefore 

Often use I-1 as an approximation for covariance matrix,  
estimate using e.g. matrix of 2nd derivatives at maximum of L. 

N 
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Example of ML with 2 parameters 
Consider a scattering angle distribution with x = cos θ, 

or if xmin < x < xmax, need always to normalize so that  

Example:  α = 0.5, β = 0.5, xmin = -0.95, xmax = 0.95,  
generate n = 2000 events with Monte Carlo. 
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Example of ML with 2 parameters:  fit result 
Finding maximum of ln L(α, β) numerically (MINUIT) gives 

N.B.  No binning of data for fit, 
but can compare to histogram for 
goodness-of-fit (e.g. ‘visual’ or χ2).  

(Co)variances from (MINUIT routine  
HESSE) 
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Two-parameter fit:  MC study 
Repeat ML fit with 500 experiments, all with n = 2000 events: 

Estimates average to ~ true values; 
(Co)variances close to previous estimates; 
marginal pdfs approximately Gaussian. 
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The ln Lmax - 1/2 contour 

For large n, ln L takes on quadratic form near maximum: 

The contour  is an ellipse: 
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(Co)variances from ln L contour 

→ Tangent lines to contours give standard deviations. 

→ Angle of ellipse φ related to correlation: 

Correlations between estimators result in an increase 
in their standard deviations (statistical errors). 

The α, β plane for the first 
MC data set 
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Information inequality for n parameters 
Suppose we have estimated n parameters    

The (inverse) minimum variance bound is given by the  
Fisher information matrix: 

The information inequality then states that V - I-1 is a positive 
semi-definite matrix, where                                  Therefore 

Often use I-1 as an approximation for covariance matrix,  
estimate using e.g. matrix of 2nd derivatives at maximum of L. 
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Extended ML 
Sometimes regard n not as fixed, but as a Poisson r.v., mean ν. 

Result of experiment defined as: n, x1, ..., xn. 

The (extended) likelihood function is: 

Suppose theory gives ν = ν(θ), then the log-likelihood is  

where C represents terms not depending on θ. 
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Extended ML (2) 

Extended ML uses more info → smaller errors for  

Example:  expected number of events  
where the total cross section σ(θ) is predicted as a function of 
the parameters of a theory, as is the distribution of a variable x.  

If n does not depend on θ but remains a free parameter, 
extended ML gives:  

Important e.g. for anomalous couplings in e+e- → W+W-
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Extended ML example 
Consider two types of events (e.g., signal and background) each  
of which predict a given pdf for the variable x:  fs(x) and fb(x). 

We observe a mixture of the two event types, signal fraction = θ,  
expected total number = ν, observed total number = n. 

Let goal is to estimate µs, µb. 

→ 
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Extended ML example (2) 

Maximize log-likelihood in  
terms of µs and µb: 

Monte Carlo example 
with combination of 
exponential and Gaussian: 

Here errors reflect total Poisson 
fluctuation as well as that in  
proportion of signal/background. 
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ML with binned data 
Often put data into a histogram: 

Hypothesis is  where 

If we model the data as multinomial (ntot constant),   

then the log-likelihood function is: 
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ML example with binned data 
Previous example with exponential, now put data into histogram: 

Limit of zero bin width → usual unbinned ML. 

If ni treated as Poisson, we get extended log-likelihood: 
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Relationship between ML and Bayesian estimators 
In Bayesian statistics, both θ and x are random variables: 

Recall the Bayesian method: 

Use subjective probability for hypotheses (θ); 

before experiment, knowledge summarized by prior pdf π(θ); 

use Bayes’ theorem to update prior in light of data: 

Posterior pdf (conditional pdf for θ given x) 
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ML and Bayesian estimators (2) 
Purist Bayesian:  p(θ | x) contains all knowledge about θ. 

Pragmatist Bayesian:  p(θ | x) could be a complicated function, 

→ summarize using an estimator  

Take mode of p(θ | x) ,  (could also use e.g. expectation value) 

What do we use for π(θ)?  No golden rule (subjective!), often 
represent ‘prior ignorance’ by π(θ) = constant, in which case 

But... we could have used a different parameter, e.g., λ= 1/θ, 
and if prior πθ(θ) is constant, then πλ(λ) is not!   

 ‘Complete prior ignorance’ is not well defined. 
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The method of least squares 
Suppose we measure N values, y1, ..., yN,  
assumed to be  independent Gaussian  
r.v.s with  

Assume known values of the control 
variable x1, ..., xN and known variances 

The likelihood function is 

We want to estimate θ, i.e., fit the curve to the data points. 
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The method of least squares (2) 

The log-likelihood function is therefore 

So maximizing the likelihood is equivalent to minimizing 

Minimum defines the least squares (LS) estimator  

Very often measurement errors are ~Gaussian and so ML 
and LS are essentially the same. 

Often minimize χ2 numerically (e.g. program MINUIT). 
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LS references 
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LS with correlated measurements 
If the yi follow a multivariate Gaussian, covariance matrix V, 

Then maximizing the likelihood is equivalent to minimizing 
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Linear LS problem 
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Linear LS problem (2) 
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Linear LS problem (3) 

Equals MVB if yi Gaussian) 
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Linear LS problem (4) 
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Example of least squares fit 

Fit a polynomial of order p: 
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Variance of LS estimators 
In most cases of interest we obtain the variance in a manner 
similar to ML.  E.g. for data ~ Gaussian we have 

and so 

or for the graphical method we  
take the values of θ where 

1.0 



G. Cowan  Statistical Data Analysis / Stat 3 62 

Two-parameter LS fit 



G. Cowan  Statistical Data Analysis / Stat 3 63 

Goodness-of-fit with least squares 
The value of the χ2 at its minimum is a measure of the level 
of agreement between the data and fitted curve: 

It can therefore be employed as a goodness-of-fit statistic to 
test the hypothesized functional form λ(x; θ). 

We can show that if the hypothesis is correct, then the statistic  
t = χ2

min follows the chi-square pdf, 

where the number of degrees of freedom is  

       nd  = number of data points - number of fitted parameters 
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Goodness-of-fit with least squares (2) 
The chi-square pdf has an expectation value equal to the number  
of degrees of freedom, so if χ2

min ≈  nd the fit is ‘good’. 

More generally, find the p-value: 

E.g. for the previous example with 1st order polynomial (line), 

whereas for the 0th order polynomial (horizontal line), 

This is the probability of obtaining a χ2
min as high as the one 

we got, or higher, if the hypothesis is correct. 
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Goodness-of-fit vs. statistical errors 
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Goodness-of-fit vs. stat. errors (2) 
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LS with binned data 
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LS with binned data (2) 
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LS with binned data — normalization 
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LS normalization example 
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Goodness of fit from the likelihood ratio 
Suppose we model data using a likelihood L(µ) that depends on N 
parameters µ = (µ1,..., µΝ).  Define the statistic 

where µ is the ML estimator for µ.  Value of tµ reflects agreement  
between hypothesized µ and the data.   

 Good agreement means µ ≈ µ, so tµ is small; 

 Larger tµ means less compatibility between data and µ. 

⌃ 

⌃ 

Quantify “goodness of fit” with p-value: 

need this pdf 
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Likelihood ratio (2) 

Now suppose the parameters µ = (µ1,..., µΝ) can be determined by 
another set of parameters θ = (θ1,..., θM), with M < N.   

E.g. in LS fit, use µi = µ(xi; θ) where x is a control variable. 

Define the statistic 

fit N parameters 

fit M parameters 

Use qµ to test hypothesized functional form of  µ(x; θ). 

To get p-value, need pdf f(qµ|µ). 
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Wilks’ Theorem (1938) 
Wilks’ Theorem: if the hypothesized parameters µ = (µ1,..., µΝ) are  
true then in the large sample limit (and provided certain conditions  
are satisfied) tµ and qµ follow chi-square distributions. 

For case with µ = (µ1,..., µΝ) fixed in numerator: 

Or if M parameters adjusted in numerator, degrees of 
freedom 
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Goodness of fit with Gaussian data 
Suppose the data are N independent Gaussian distributed values: 

known want to estimate 

Likelihood: 

Log-likelihood: 

ML estimators: 
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Likelihood ratios for Gaussian data 

The goodness-of-fit statistics become 

So Wilks’ theorem formally states the well-known property 
of the minimized chi-squared from an LS fit. 
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Likelihood ratio for Poisson data 
Suppose the data are a set of values n = (n1,..., nΝ), e.g., the 
numbers of events in a histogram with N bins. 

Assume ni ~ Poisson(νi), i = 1,..., N, all independent.   

Goal is to estimate ν = (ν1,..., νΝ). 

Likelihood: 

Log-likelihood: 

ML estimators: 
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Goodness of fit with Poisson data 
The likelihood ratio statistic (all parameters fixed in numerator): 

Wilks’ theorem:   
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Goodness of fit with Poisson data (2) 
Or with M fitted parameters in numerator: 

Wilks’ theorem:   

Use tµ, qµ to quantify goodness of fit (p-value). 

Sampling distribution from Wilks’ theorem (chi-square). 

Exact in large sample limit; in practice good approximation for  
surprisingly small ni (~several). 



G. Cowan  Statistical Data Analysis / Stat 3 79 

Goodness of fit with multinomial data 
Similar if data n = (n1,..., nΝ) follow multinomial distribution: 

E.g. histogram with N bins but fix:  

Log-likelihood: 

ML estimators: (Only N-1 independent; one 
is ntot minus sum of rest.) 
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Goodness of fit with multinomial data (2) 

The likelihood ratio statistics become: 

One less degree of freedom than in Poisson case because  
effectively only N-1 parameters fitted in denominator. 
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Estimators and g.o.f. all at once 
Evaluate numerators with θ (not its estimator): 

(Poisson) 

(Multinomial) 

These are equal to the corresponding -2 ln L(θ) plus terms not  
depending on θ, so minimizing them gives the usual ML  
estimators for θ. 

The minimized value gives the statistic qµ, so we get 
goodness-of-fit for free. 
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Using LS to combine measurements 
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Combining correlated measurements with LS 
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Example: averaging two correlated measurements 
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Negative weights in LS average 


