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Systematic uncertainties and nuisance parameters 
In general our model of the data is not perfect: 

x  

L 
(x

|θ
) 

model:   

truth: 

Can improve model by including  
additional adjustable parameters. 

Nuisance parameter ↔ systematic uncertainty. Some point in the 
parameter space of the enlarged model should be “true”.   

Presence of nuisance parameter decreases sensitivity of analysis 
to the parameter of interest (e.g., increases variance of estimate). 
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p-values in cases with nuisance parameters 
Suppose we have a statistic qθ that we use to test a hypothesized 
value of a parameter θ, such that the p-value of θ is 

But what values of ν to use for f (qθ|θ, ν)? 
Fundamentally we want to reject θ only if pθ < α for all ν. 

 → “exact” confidence interval 
Recall that for statistics based on the profile likelihood ratio, the 
distribution f (qθ|θ, ν) becomes independent of the nuisance 
parameters in the large-sample limit. 
But in general for finite data samples this is not true; one may be 
unable to reject some θ values if all values of ν must be 
considered, even those strongly disfavoured by the data (resulting 
interval for θ “overcovers”). 
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Profile construction (“hybrid resampling”) 

Approximate procedure is to reject θ if pθ ≤ α where 
the p-value is computed assuming the value of the nuisance 
parameter that best fits the data for the specified θ: 

“double hat” notation means 
value of parameter that maximizes 
likelihood for the given θ. 

The resulting confidence interval will have the correct coverage 
for the points  (θ, ˆ̂ν(θ)) . 

Elsewhere it may under- or overcover, but this is usually as good 
as we can do (check with MC if crucial or small sample problem). 
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“Hybrid frequentist-Bayesian” method 

Alternatively, suppose uncertainty in ν is characterized by 
a Bayesian prior π(ν). 

Can use the  marginal likelihood to model the data:  

This does not represent what the data distribution would 
be if we “really” repeated the experiment, since then ν would 
not change. 

But the procedure has the desired effect.  The marginal likelihood 
effectively builds the uncertainty due to ν into the model. 

Use this now to compute (frequentist) p-values → the model  
being tested is in effect a weighted average of models. 
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Example of treatment of nuisance 
parameters:  fitting a straight line 

Data: 
 
Model:  yi independent and all follow yi  ~ Gauss(µ(xi ), σi ) 

  

 

assume xi and σi known. 

Goal:  estimate θ0  

Here suppose we don’t care  
about θ1 (example of a  
“nuisance parameter”) 
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Maximum likelihood fit with Gaussian data 

In this example, the yi are assumed independent, so the 
likelihood function is a product of Gaussians: 

Maximizing the likelihood is here equivalent to minimizing 

i.e., for Gaussian data, ML same as Method of Least Squares (LS) 
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θ1 known a priori 

For Gaussian yi, ML same as LS 
 
Minimize χ2 → estimator 

Come up one unit from      

to find  
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Correlation between 

             causes errors 

to increase. 

Standard deviations from 

tangent lines to contour 

 

ML (or LS) fit of θ0 and θ1 
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The information on θ1 

improves accuracy of 

 

If we have a measurement t1 ~ Gauss (θ1, σt1) 
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Bayesian method 

We need to associate prior probabilities with θ0 and θ1, e.g., 

Putting this into Bayes’ theorem gives: 

posterior    ∝                  likelihood         ✕       prior 

← based on previous  
     measurement 

‘non-informative’, in any 
case much broader than 
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Bayesian method (continued) 

Usually need numerical methods (e.g. Markov Chain Monte 
Carlo) to do integral. 

We then integrate (marginalize)  p(θ0, θ1 | x) to find p(θ0 | x): 

In this example we can do the integral (rare).  We find 
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Digression: marginalization with MCMC 
Bayesian computations involve integrals like 

often high dimensionality and impossible in closed form, 
also impossible with ‘normal’ acceptance-rejection Monte Carlo. 

Markov Chain Monte Carlo (MCMC) has revolutionized 
Bayesian computation.   

MCMC (e.g., Metropolis-Hastings algorithm) generates  
correlated sequence of random numbers: 

 cannot use for many applications, e.g., detector MC; 
 effective stat. error greater than if all values independent . 

Basic idea:  sample multidimensional  
look, e.g., only at distribution of parameters of interest.  
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MCMC basics:  Metropolis-Hastings algorithm 
Goal:  given an n-dimensional pdf  
generate a sequence of points  

1)  Start at some point  

2)  Generate   

Proposal density 
e.g. Gaussian centred 
about 

3)  Form Hastings test ratio 

4)  Generate 

5)  If 

else 

move to proposed point 

old point repeated 

6)  Iterate 
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Metropolis-Hastings (continued) 
This rule produces a correlated sequence of points (note how  
each new point depends on the previous one). 

For our purposes this correlation is not fatal, but statistical 
errors larger than if points were independent. 

The proposal density can be (almost) anything, but choose 
so as to minimize autocorrelation.  Often take proposal 
density symmetric: 

Test ratio is (Metropolis-Hastings): 

I.e. if the proposed step is to a point of higher           , take it;   
if not, only take the step with probability  
If proposed step rejected, hop in place. 
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Although numerical values of answer here same as in frequentist 
case, interpretation is different (sometimes unimportant?) 

Example:  posterior pdf from MCMC 
Sample the posterior pdf from previous example with MCMC: 

Summarize pdf of parameter of 
interest with, e.g., mean, median, 
standard deviation, etc. 
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Bayesian method with alternative priors 
Suppose we don’t have a previous measurement of θ1 but rather,  
e.g., a theorist says it should be positive and not too much  greater 
than 0.1 "or so", i.e., something like 

From this we obtain (numerically) the posterior pdf for θ0: 

This summarizes all  
knowledge about θ0. 

Look also at result from  
variety of  priors. 



G. Cowan  Statistical Data Analysis / Stat 5 18 

A typical fitting problem 
Given measurements:  

and (usually) covariances: 

Predicted value: 

control variable parameters bias 

Often take: 

Minimize 

Equivalent to maximizing L(θ) ~ e-χ2/2, i.e., least squares same  
as maximum likelihood using a Gaussian likelihood function.  

expectation value 
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Its Bayesian equivalent 

and use Bayes’ theorem: 

To get desired probability for θ, integrate (marginalize) over b: 

→ Posterior is Gaussian with mode same as least squares estimator,  
          σθ  same as from χ2 = χ2

min + 1.  (Back where we started!) 

Take 

Joint probability 
for all parameters 
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The error on the error 
Some systematic errors are well determined 

 Error from finite Monte Carlo sample 
 
Some are less obvious 

 Do analysis in n ‘equally valid’ ways and 
 extract systematic error from ‘spread’ in results. 

 
Some are educated guesses 

 Guess possible size of missing terms in perturbation series;  

 vary renormalization scale 

Can we incorporate the ‘error on the error’? 

 (cf. G. D’Agostini 1999; Dose & von der Linden 1999) 
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Motivating a non-Gaussian prior πb(b) 
Suppose now the experiment is characterized by 

where si is an (unreported) factor by which the systematic error is  
over/under-estimated. 

Assume correct error for a Gaussian πb(b) would be siσi
sys, so 

Width of σs(si) reflects 
‘error on the error’. 
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Error-on-error function πs(s) 
A simple unimodal probability density for 0 < s < 1 with  
adjustable mean and variance is the Gamma distribution: 

Want e.g. expectation value  
of 1 and adjustable standard  
Deviation σs , i.e.,  

mean = b/a 
variance = b/a2 

In fact if we took πs (s) ~ inverse Gamma, we could integrate πb(b) 
in closed form (cf. D’Agostini, Dose, von Linden).  But Gamma 
seems more natural & numerical treatment not too painful. 

s 
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Prior for bias πb(b) now has longer tails 

Gaussian (σs = 0)      P(|b| > 4σsys)  =  6.3 × 10-5 

σs = 0.5                    P(|b| > 4σsys)  =  0.65% 

b 
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A simple test 
Suppose fit effectively averages four measurements. 

 Take σsys = σstat = 0.1, uncorrelated. 

Case #1: data appear compatible Posterior p(µ|y): 

Usually summarize posterior p(µ|y)  
with mode and standard deviation: 

experiment 

m
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m
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t

µ
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Simple test with inconsistent data 
Case #2: there is an outlier 

→ Bayesian fit less sensitive to outlier. 

→ Error now connected to goodness-of-fit. 

Posterior p(µ|y): 

experiment 

m
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Goodness-of-fit vs. size of error 
In LS fit, value of minimized χ2 does not affect size 
of error on fitted parameter. 
 
In Bayesian analysis with non-Gaussian prior for systematics, 
a high χ2 corresponds to a larger error (and vice versa). 

2000 repetitions of 
experiment, σs = 0.5, 
here no actual bias. 

χ2 

σµ from least squares 

post- 
erior
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Is this workable in practice? 
Should to generalize to include correlations 

 Prior on correlation coefficients ~ π(ρ) 
 (Myth:  ρ = 1 is “conservative”) 

 
Can separate out different systematic for same measurement 

 Some will have small σs, others larger. 
 
Remember the “if-then” nature of a Bayesian result:   

 We can (should) vary priors and see what effect this 
 has on the conclusions. 
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Bayesian model selection (‘discovery’) 

no Higgs 

Higgs 

The probability of hypothesis H0 relative to its complementary 
alternative H1 is often given by the posterior odds: 

Bayes factor B01 prior odds 

The Bayes factor is regarded as measuring the weight of  
evidence of the data in support of H0 over H1. 

Interchangeably use B10 = 1/B01 
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Assessing Bayes factors 
One can use the Bayes factor much like a p-value (or Z value). 

The Jeffreys scale, analogous to HEP's 5σ rule: 
 
B10   Evidence against H0 
-------------------------------------------- 
1 to 3   Not worth more than a bare mention 
3 to 20  Positive 
20 to 150  Strong 
> 150   Very strong 

Kass and Raftery, Bayes Factors, J. Am Stat. Assoc 90 (1995) 773. 
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Rewriting the Bayes factor 
Suppose we have models Hi, i = 0, 1, ..., 

each with a likelihood 

and a prior pdf for its internal parameters  

so that the full prior is 

where                         is the overall prior probability for Hi.  

The Bayes factor comparing Hi and Hj can be written  
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Bayes factors independent of P(Hi) 

For Bij we need the posterior probabilities marginalized over 
all of the internal parameters of the models: 

Use Bayes 
theorem 

So therefore the Bayes factor is 

The prior probabilities pi = P(Hi) cancel. 

Ratio of  marginal 
likelihoods 
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Numerical determination of Bayes factors 
Both numerator and denominator of Bij are of the form 

‘marginal likelihood’ 

Various ways to compute these, e.g., using sampling of the 
posterior pdf (which we can do with MCMC). 

 Harmonic Mean (and improvements) 
 Importance sampling 
 Parallel tempering (~thermodynamic integration) 
 Nested Samplying (MultiNest), ... 



G. Cowan  Statistical Data Analysis / Stat 5 33 

Priors for Bayes factors 
Note that for Bayes factors (unlike Bayesian limits), the prior  
cannot be improper.  If it is, the posterior is only defined up to an 
arbitrary constant, and so the Bayes factor is ill defined  

 Possible exception allowed if both models contain same 
 improper prior;  but having same parameter name (or Greek 
 letter) in both models does not fully justify this step. 

If improper prior is made proper e.g. by a cut-off, the Bayes factor 
will retain a dependence on this cut-off. 

In general or Bayes factors, all priors must reflect “meaningful” 
degrees of uncertainty about the parameters.  
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Harmonic mean estimator 
E.g., consider only one model and write Bayes theorem as: 

π(θ) is normalized to unity so integrate both sides, 

Therefore sample θ from the posterior via MCMC and estimate m  
with one over the average of 1/L (the harmonic mean of L). 

posterior 
expectation 
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Improvements to harmonic mean estimator 
The harmonic mean estimator is numerically very unstable; 
formally infinite variance (!).  Gelfand & Dey propose variant: 

Rearrange Bayes thm; multiply  
both sides by arbitrary pdf f(θ): 

Integrate over θ : 

Improved convergence if tails of f(θ) fall off faster than L(x|θ)π(θ) 

Note harmonic mean estimator is special case f(θ) = π(θ). 
. 



G. Cowan  Statistical Data Analysis / Stat 5 36 

Importance sampling 
Need pdf f(θ) which we can evaluate at arbitrary θ and also 
sample with MC. 

The marginal likelihood can be written 

Best convergence when f(θ) approximates shape of L(x|θ)π(θ). 

Use for f(θ) e.g. multivariate Gaussian with mean and covariance 
estimated from posterior (e.g. with MINUIT). 
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Extra slides 
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The Look-Elsewhere Effect 

Gross and Vitells, EPJC 70:525-530,2010, arXiv:1005.1891 

Suppose a model for a mass distribution allows for a peak at 
a mass m with amplitude µ.

The data show a bump at a mass m0. 

How consistent is this 
with the no-bump (µ = 0) 
hypothesis? 
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Local p-value 
First, suppose the mass m0 of the peak was specified a priori. 

Test consistency of bump with the no-signal (µ = 0) hypothesis  
with e.g. likelihood ratio  

where “fix” indicates that the mass of the peak is fixed to m0. 

The resulting p-value  

gives the probability to find a value of tfix at least as great as 
observed at the specific mass m0 and is called the local p-value. 
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Global p-value 
But suppose we did not know where in the distribution to 
expect a peak. 

What we want is the probability to find a peak at least as  
significant as the one observed anywhere in the distribution. 

Include the mass as an adjustable parameter in the fit, test  
significance of peak using 

(Note m does not appear 
in the µ = 0 model.) 
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Distributions of tfix, tfloat 

For a sufficiently large data sample, tfix ~chi-square for 1 degree 
of freedom (Wilks’ theorem). 

For tfloat there are two adjustable parameters, µ and m, and naively 
Wilks theorem says tfloat ~ chi-square for 2 d.o.f. 

In fact Wilks’ theorem does 
not hold in the floating mass 
case because on of the 
parameters (m) is not-defined 
in the µ = 0 model. 

So getting tfloat distribution is 
more difficult. 

Gross and Vitells 
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Approximate correction for LEE 
We would like to be able to relate the p-values for the fixed and 
floating mass analyses (at least approximately). 

Gross and Vitells show the p-values are approximately related by 

where 〈N(c)〉 is the mean number “upcrossings” of   
tfix = -2ln λ  in the fit range based on a threshold 

and where Zlocal = Φ-1(1 – plocal) is the local significance. 
So we can either carry out the full floating-mass analysis (e.g.  
use MC to get p-value), or do fixed mass analysis and apply a  
correction factor (much faster than MC). 

Gross and Vitells 



G. Cowan  Statistical Data Analysis / Stat 5 44 

Upcrossings of -2lnL 

〈N(c)〉 can be estimated  
from  MC (or the real  
data) using a much lower  
threshold c0: 

Gross and Vitells 

The Gross-Vitells formula for the trials factor requires 〈N(c)〉, 
the mean number  “upcrossings” of tfix = -2ln λ above a threshold 
c = tfix,obs found when varying the mass m0 over the range considered. 
  

In this way 〈N(c)〉 can be 
estimated without need of 
large MC samples, even if  
the the threshold c is quite 
high. 
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Multidimensional look-elsewhere effect 
Generalization to multiple dimensions:  number of upcrossings 
replaced by expectation of Euler characteristic: 

Applications:  astrophysics (coordinates on sky), search for 
resonance of unknown mass and width, ... 

Vitells and Gross, Astropart. Phys. 35 (2011) 230-234; arXiv:1105.4355 
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Remember the Look-Elsewhere Effect is when we test a single 
model (e.g., SM) with multiple observations, i..e, in mulitple 
places. 

Note there is no look-elsewhere effect when considering 
exclusion limits.    There we test specific signal models (typically 
once) and say whether each is excluded. 

With exclusion there is, however, the analogous issue of testing  
many signal models (or parameter values) and thus excluding  
some even in the absence of signal (“spurious exclusion”) 

Approximate correction for LEE should be sufficient, and one  
should also report the uncorrected significance. 

 “There's no sense in being precise when you don't even  
 know what you're talking about.” ––  John von Neumann 

Summary on Look-Elsewhere Effect 
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Common practice in HEP has been to claim a discovery if the  
p-value of the no-signal hypothesis is below 2.9 × 10-7,  
corresponding to a significance Z = Φ-1 (1 – p) = 5 (a 5σ effect). 

There a number of reasons why one may want to require such 
a high threshold for discovery: 

 The “cost” of announcing a false discovery is high. 

 Unsure about systematics. 

 Unsure about look-elsewhere effect. 

 The implied signal may be a priori highly improbable 
 (e.g., violation of Lorentz invariance). 

Why 5 sigma? 
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But the primary role of the p-value is to quantify the probability 
that the background-only model gives a statistical fluctuation 
as big as the one seen or bigger. 

It is not intended as a means to protect against hidden systematics 
or the high standard required for a claim of an important discovery. 

In the processes of establishing a discovery there comes a point 
where it is clear that the observation is not simply a fluctuation, 
but an “effect”, and the focus shifts to whether this is new physics 
or a systematic. 

Providing LEE is dealt with, that threshold is probably closer to 
3σ than 5σ. 

Why 5 sigma (cont.)? 



To estimate a parameter we have  
various tools such as maximum  
likelihood,  least squares, etc. 

Usually one also needs to know the variance (or the full sampling 
distribution) of the estimator – this can be more difficult.   

Often use asymptotic properties, e.g., sampling distribution of ML 
estimators becomes Gaussian in large sample limit; std. dev. from 
curvature of log-likelihood at maximum. 

The jackknife and bootstrap are examples of “resampling” methods 
used to estimate the sampling distribution of statistics.   

In HEP  we often do this implicitly by using Toy MC to determine  
sampling properties of statistics (e.g., Brazil plot for 1σ, 2σ bands  
of limits). 
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Jackknife, bootstrap, etc. 



Invented by Quenouille (1949) and Tukey (1958). 

Suppose data sample consists of n events: x = (x1,... xn). 

We have an estimator θ(x) for a parameter θ. 

Idea is to produce pseudo data samples x-i = (x1,..., xi-1, xi+1,... xn) 
by leaving out the ith event. 

Let θ-1 be the estimator obtained from the data sample x-i. 

Suppose the estimator has a nonzero bias:  

The jackknife estimator  
of the bias is 

ˆ 
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The Jackknife 

ˆ 

See, e.g., Notes on Jackknife and Bootstrap by G. J. Babu: 
www.iiap.res.in/astrostat/School10/LecFiles/ 
JBabu_JackknifeBootstrap_notes.pdf 
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The Bootstrap (Efron, 1979) 
Idea is to produce a set of  “bootstrapped” data samples 
of same size as the original (real) one by sampling from some  
distribution that approximates the true (unknown) one.   

By evaluating a statistic (such as an estimator for a parameter θ)  
with the bootstrapped-samples, properties of its sampling  
distribution (often its variance) can be estimated. 

If the data consist of n events, one way to produce the 
bootstrapped samples is to randomly select from the original  
sample n events with replacement (the non-parametric bootstrap). 

 That is, some events might get used multiple times, others 
 might not get used at all. 

In other cases could generate the bootstrapped samples from 
a parametric MC model, using parameter values estimated from 
real data in the MC (parametric bootstrap). 
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The Bootstrap (cont.) 
Call the data sample x = (x1,... xn), observed data are xobs,  

and the bootstrapped samples are x1*, x2*, ... 

Idea is to use the distribution of 

as an approximation for the distribution of 

In the first quantity everything is known from the observed data 
plus bootstrapped samples, so we can use its distribution to 
estimate bias, variance, etc. of the estimator θ. ˆ 


