Draft version 1.0

ATLAS NOTE

CERN
ATL-INT/2009-000 \

ard

April 13, 2009

Trigger Validation Dashboard: requirements, design and irstructions

Alejandro Oyarzun, Will Brooks and Ricardo Gongalo

Abstract

The trigger dashboard was designed to assist in the offliigati@n of the trigger soft-
ware. The validation activity aims to guarantee the qualftshe trigger software, including
the level 1 simulation of the trigger response and the hayledltrigger reconstruction and
selection algorithms as well as configuration and steerifrgstructure. The purpose of the
trigger dashboard is to collect and display useful infoiorato assess the performance and
quality of the trigger software over long periods.

April 13,2009 - 23: 07 DRAFT

Contents

1 Introduction
1.1 Trigger validation and automatictests 0.

2 Tool Design
2.1 \Variable harvesting L e e
2.2 Dataandconfiguration storage e e e
2.3 Administrative interface e
24 Userinterface e e
2.5 ImplementationDetails e e

3 Conclusions

A Requirements
A.1 Validation requirements e e e e e
A.2 Tool Features e
A.3 Functional Requirements e e
A.3.1 Variable Storing e
A.3.2 VariableHarvesting e
A.3.3 Tool Configuration e e
A.3.4 AccesstolInformation
A.4 Non-Functional Requirements e e

B Instructions
B.1 Userlinterface e
B.1.1 Displaying a monitoredtestvariable
B.2 Administrative Interface e e
B.2.1 Loggingin e e
B.2.2 Adding a new test variable to be monitored e e e
B.2.3 Enabling/disablingatest e

April 13,2009 - 23: 07 DRAFT 3

"A project is like a road trip. Some are like driving to the tan broad daylight. But most

projects worth doing are more like driving a trruck off-ro@mthe mountains, at night. As a
tester, you illuminate the road ahead so the programmermandgers, however they bicker
over the map, can at least see where they are, what they'td tthun over, and how close

they are to the cliff.” [1] C. Kaner, J. Bach, B. Pettichord

1 Introduction

The trigger validation activity [2] aims to guarantee thelify of the trigger software. Included in
this domain are: the level 1 simulation of the trigger regmorthe high-level trigger reconstruction
and selection algorithms, the configuration and steerifigsitructure, and the trigger analysis tools.
The purpose of the trigger dashboard is to assist in thigigchy providing easy access to a series of
software quality and performance metrics over long periods

The trigger dashboard will automatically harvest quaggifirom a variety of nightly tests and store
them in a database. Users will be able to query this datahasegh a web-based interface to obtain and
display these quantities and their evolution over time.sill give indications on the evolution of the
software performance over time.

This note describes the trigger dashboard. Section A descthe requirements that were identified
and that the tool should satisfy. Section 2 describes theathvdesign of the tool. Section B gives
detailed instructions on the configuration and usage ofdbk We expect this tool to be valuable for
trigger software validation and release coordination, afi as to debugging trigger and pinpointing
when possible problems first occurred.

1.1 Trigger validation and automatic tests

The validation activity is carried out by a team spread adoseveral continents. Any common tool
therefore needs to be have a web interface. It should noireegjpecialized knowledge for its use, since
it should allow the validation activity to eventually becera non-expert task.

Much of the trigger validation daily activity consists in mtoring the result of a series of tests.
These are performed nightly and are based on two test “sdgffor test infrastructures, common to
other ATLAS software domains. The test scaffolds are knosvAEN [3] (ATLAS Test Nightlies) and
RTT [4] (Run Time Tester). ATN runs in the set of computersdufe building the release every night
and is managed by the NICOS system [5]. The ATN system can e tasperform relatively quick
tests. These usually run Athena on a few events and takeatlypic minutes or less. RTT tests run on
a dedicated set of machines at CERN. Typically these aretogeetform longer tests on 1000 events or
more. The major time constraint for both types of test is thatsystem must be free when the following
nightly starts to be built or tested. Other kinds of testdrads exist but are not at the moment used
systematically in the trigger validation.

Both ATN and RTT test results are displayed in dedicated vwagiep hosted at CERN. Test results
are also copied to directories #fs. Results are kept during 7 days, corresponding to a fullecg€l
nightly releases (nametkl 0 to rel 6). Results older than a week are lost unless a record is kept
independently of the test scaffolds. This is one of the psepmf the Trigger Dashboard.

In the following, atest variable will correspond to a given quantity (e.g. average time penesgpent
in trigger processing) measured by a given test (e.g. rgnthia electron trigger selection on 1060
events). In some cases, priorities are assigned to a sdatddeequirements.

April 13,2009 - 23: 07 DRAFT 4

RTT
Data Worker Test 1
collector 1 Var 1 Platform
Test 1 1
Test 2 Refease1
Test 2
Web Worker ;Iatform
Interface 2 Var 2
Test 1
Test 3 Test 3
Platform
~ j
e S [_Re-l.easei_

Figure 1: Overall design of the trigger dashboard.

2 Tool Design

Figure 1 illustrates the overall design. The tool is cemtearmund a database implemented in a SQLite
file. The database stores both the variables harvested fremightly tests and the dashboard configu-
ration. A “Data Collector” script collects test variablescarding to the tool configuration and returns
their values to the database. The dynamic web interfaces, Rgihon scripts and the Django library of
web utilities to provide an administrative interface to tbel. A different web page allow users to query
the variables stored in the database and to display therbliestand graphically using ROOT libaries.

2.1 Variable harvesting

Variable values are harvested every day by the Data Cotlfctm the nightly test files left in afs. This
module is a@ash shell script which executes a series of other “worker” skefipts, also represented in
figure 1. These worker scripts are the ones which retrievedhable values from the files left in afs by
the nightly tests.

The data collector interacts with the database through camartine SQL queries to obtain the list
of worker scripts to execute as well as their configuratiomisTconfiguration includes, for example,
the complete path to the file containing the variable to beaei¢d. The worker scripts are written
specifically to retrieve the value of a given variable or amévariables. The fact that they are simple
shell scripts allows a great deal of flexibility. They canybsimply use command-line tools such as
grep, Oor awk. They can also call other scripts or execute ROOT macrosttaathe sought after values.

2.2 Data and configuration storage

The database schema is shown in figure 2. The name and descdpeach test variable is contained
in the table named “Vars”. Each variable is identified by a &alditional parameters, such as the name
of the test which produces this variable, the release arttbpia on which this test is executed. These
parameters are contained in the table named “YZate”. The complete list of parameters identifying
each variable value are:

e Suite: intended to identify the test suite or scaffold, &I or ATN

April 13,2009 - 23: 07 DRAFT 5

= Worker_Test_Package -
Vars General_Config ~ ¥ platform_name: CHAR (30) (FK)
Y v CHAR(100) ¥ path: CHAR(200) ¥ area_name; CHAR (20) (FK)
var_desc: VARCHAR ¥ release_narne: CHAR(30) (FK)
& enatled: INT(1) | e el 24 ————————+€ § buid_name: CHAR(0) (FK)

Bulds -
Rel_15 # buld_name: CHAR (20)
& buid_desc: VARCHAR

it worker_name: CHAR(S0) (FK)
test_package_narme: CHAR (S0) (FK)
i test_name: CHAR(SD) (FK)

(e A o1 [Rel26 O enabled: INT(1) % enabled: INT(1)
¥ date; INTEGER t_Package_fXIndecd
i tests_sute: CHAR(SO) Rel 23 i ; ki
var_name: CHAR(100) (FK) . 3
¥ tests_number: INTEGER ’—‘(
@ buld_name; CHAR(20) (FK) .
i area_name: CHAR(20) (FK) iy Release - s
 release_name: CHAR(30) (FK) == # release_name: CHAR(30) Rel_22
¥ platform_name: CHAR(30) (FK) >4_I_H' o release_desc: VARCHAR
¥ test_name: CHAR(SD) (FK) @ enabled; INT(1)
¥ test_patkage_name: CHAR(SO) (FK)
& value; CHAR(20) Rel 29 L
N ¥ area_name: CHAR 20) Rel_21

¥ platform_name: CHAR(30) | Worker_Test_Package_act 5

o platform_desc: VARCHAR ¥ tost_name: CHAR(SD) (FK)
& enabled: INT(1) ¥ test_package_name: CHAR(S0) (FK)

attach: BLOB - == e —
v H— H§ area_desc: vaRcHaR
o enabled: INT(1) | Rel_33.
v (I
Rel_29
a o3).—‘* Platform ~|
v ”

worker_name: CHAR(S0) (FK)

@ enabled; INT(1)
Re\ 30 . Ir—'(jl 2 m ke Test.. ﬂaﬁga St RIoeR]
o
Test Package_Test ~
P FiTncex?
test_package_name: CHAR(SO) (FK) < :VDV'A?'JEI” fm‘k AL
4 test name: CHAR(S0) tFx)
%o, Rel_17
Workers -
— worker_name: CHAR(S0)
‘est_Package 5 - O}
Tt = S o worker_target_fie: CHAR(S0)

% test_name: CHAR(S0) St R TR @ werker_SCrpt_fie: CHAR(SD)
3 & worker_desc: VARCHAR
9 test_desc: VARCHAR & enabled; INT(1) ghed: RT(1)
& enabled: INT(1) 9 e %

Figure 2: Schema of the Trigger Dashboard database

Build: opt or dbg for optimised or debug builds

Area: intended for future use, possibly@x¥1line andintegration

Release: e.g. 15.3.0 for nightlies leading up to 15.3.0

Platform: e.g.i686-s1c4-gcc34 for a build for Scientific Linux 4 using gcc 3.4

Test name: test which produces the variable, suagttAsnaModernRDOtoESDAOD
e Test package: software package used to run the tesfeigAnalysisTest

These parameters are used by the data collector to builcathagthe file containing the variable to be
extracted.

SQLite imposes some limitations in terms of concurrent datess and volume of data stored. These
limits are, however, more than sufficient for the long-tinpe@tion of the tool. The volume of data to
be stored is around 200 MB/year or less, and SQLite files greaed to take up to 2 GB.

2.3 Administrative interface
2.4 User interface

2.5 Implementation Details

The current version of the trigger dashboard was developathst the following versions of external
software: Python 2.5; SQLite XXX, Django YYY; Apache modul&Z.

Due to CERN rules regarding internet security, the tool isantly installed in a dedicated web-
server machineyoatlas24, which also hosts other ATLAS components.

April 13, 2009 - 23: 07

Trigger Dashboard

Fill the filters to start a new search:

Var Name Test Name Release Name Initial Date
‘ wnemefit ‘ ‘ te ‘ I
Platform Name testathenaModernRDO March ¥ | 2009
‘ ‘testAthenaMGdemRDOtoAOD —]
testathenaModernRDOtOESDAOD ————————— | Mon Tue Wed Thu Fri Sat Sun
estCaloAthenaModernRDO Search i
estElectronSliceAthenaModernRDO L
estMuonSlicesthenaModernRDO 2 & # B i :
testTausliceAthenaModernRDOtOESDAOD 9 10 [11] 12 13
16 17 18 19 20
23 24 25 26 27
30 31
Today is Wed, 11 Mar 2009
4000,
3500
3000
2500
2000
1500
1000/
o lj
VT e R TN 7
day since 12000
Figure 3: User interface of the Trigger Dashboard.
Associate: Test/Package/Worker + Release/Platform/Build/Area
Package/Test: Workers: Build: Release:
Blank “ || Blank Blank Blank
TriggerT est--Trigger_topOptions_forRiecE xComr 40D pool. oot checkFile. 1 build dev
TriggerT est--testithenaModemRDO ESD wal
TriggerT est-+testCalodthenatodemfD D gEV[\fE‘
ugfis

TnggevT est--testElectronSlicesthenaModemmRD

-testbuonSlicedthenabodemnR DO

estT auSlicedthenatodemRD Otol

stithenatodemBDOESDAODD
2]

Platform: Area:

Elank “ || Blank:

1686-slc4-goc 34 offline
hit

TriggerTest | testathenaModernRDOtoA0D || ntuple.perfmon.summary.1 || build dev 686~ 5\1:4 gce34-opt afﬂme

1 TriggerTest || testathenaModernRDOLoAOD | ntuple perfmon . summary, 1| build || devval | i686-slc4-gec34-opt | offline
i686-slc4-gec34-opt || hit

1 TriggerTest | testathenaModernRDOtoA0D || ntuple.perfman.summary.1 || build [dev]

Figure 4: Administrative interface of the Trigger Dashlibar

April 13,2009 - 23: 07 DRAFT

3 Conclusions

... conclusions

April 13,2009 - 23: 07 DRAFT 8

References

[1] C. Kaner, J. Bach, B. Pettichord, Lessons learned innvsok testing: a context-driven approach,
(John Wiley & Sons, New York,).

[2] D. E. Ferreira de Lima et al., (PoS(ACAT08)084, ATL-COMAQ-2008-018, Erice, Italy, Novem-
ber 2009).

[3] ATLAS Test Nightlies and Nightly COntrol System web page http://atlas-
computing.web.cern.ch/atlas-computing/links/diséidiory/nightlies/global/nightly.html.

[4] Run-Time Tester web page, http://www.hep.ucl.ac.t&sdAtlasTesting/.

[5] A. E. Undrus et al., (arXiv:hep-ex/0305087v1, La JofGalifornia, USA, March 2003).

April 13,2009 - 23: 07 DRAFT 9

A Requirements

This section describes a set of requirements that guidedigsign of the trigger dashboard. The aim was

to produce a useful validation tool that required little niahance and was easy to use by non-experts.
In the following, atest variable will correspond to a given quantity (e.g. average time penegpent

in trigger processing) measured by a given test (e.g. rgntiia electron trigger selection on 1080

events). In some cases, priorities are assigned to a sdatddeequirements.

A.1 Validation requirements

To be a useful tool for the trigger validation, the triggesklaoard needs to fulfil a set of basic require-
ments:

1. The functionality provided by the tool must be accesditteugh a web interface, to provide easy
access to collaborators around the world

2. The tool should require low maintenance when somethiag@és in the trigger tests

3. The implementation should use easily available and palgimain technology that requires mini-
mal updates

4. The tool must allow access to test variables over a lonigger
5. The tool should automatically harvest test variablesfroghtly test results and be robust against
sudden changes or failures in the tests
A.2 Tool Features

This section aims to identify features of the trigger dasttdahat will help to fulfill the above require-
ments.

1. Storage: the values of test variables shall be kept inti§inn storage and be classified according
to unique criteria, including the test date, test nametitleation, and a short textual description

2. Variable harvesting: the trigger dashboard shall autimaddy collect values of variables from RTT
and ATN or other test scaffolds which write results to afs

3. Tool configuration: it shall be possible to configure thel to collect new variables; this should
require around one hour of work or less by an authorised &xper

4. Access to information: it should be possible to accesgdhevariables and perform complex
gueries on them through a web interface. As an example, itidhme easy to see the evolution of
a variable over time and correlations with other variables

5. Access control: it should not be possible to non-autkdrizeople to change the tool configuration
or modify any of the collected data
A.3 Functional Requirements
A.3.1 Variable Storing

1. Each variable shall correspond to a quantity extractamh & single test executed every night and
should be kept independently of other variables, even gdhwve the same name

April 13,2009 - 23: 07 DRAFT 10

2. The technology used for storing variable values shouldltide to store of the order of 2000
floating-point quantities every day from each of about 4dpiatforms; the overall volume in-
crease expected is of around 200 MB/year or less

3. the variable values should be kept for at least 5 years

A.3.2 Variable Harvesting
1. The harvesting of test variable values shall be done aatioally by the tool from files in afs

2. The tool shall be robust against missing files, direcsorie the occurrence of the variable in the
file

3. The tool should be able to harvest variables from text,flROOT files, or using calls to the
operating system

A.3.3 Tool Configuration

1. It should be possible to easily configure the Trigger Daahth to retrieve a new variable or an
existing variable produced by a new test

2. The tool configuration should be done through a web interéeccessible through a password

3. Itis not foreseen that more than one authorised useriwillisaneously edit the tool configuration

A.3.4 Access to Information

1. A non-expert user should be able to query the test vagatitered and display graphically their
evolution over time

2. The exact values of test variables should be accessikédbla format
3. Itis not expected that many users will simultaneousheasthe trigger dashboard; as an estimate,

the numbers of simultaneous users should be always lesd thand usually only one

A.4 Non-Functional Requirements

April 13,2009 - 23: 07 DRAFT

B Instructions

B.1 User Interface
B.1.1 Displaying a monitored test variable

... between certain dates
... other types of queries

B.2 Administrative Interface
B.2.1 Loggingin
B.2.2 Adding a new test variable to be monitored

B.2.3 Enabling/disabling a test

.. etc

11

