PH5260 - Particle Physics / 2006-07

Post Graduate Problem Set 1

To be handed in to PTD before the tutorial on November 9, 2006

1. The LEP1 collider at CERN collided electrons with positrons, both with energy 45 GeV . What positron beam energy would be required to obtain the same centre-of-mass energy on a stationary electron target? The proposed LHC will collide protons with protons at a beam energy of 7 TeV . What beam energy would be required for the same centre-of-mass energy in a fixed target experiment in this case?
2. The π^{0} is a spinless particle of mass 135 MeV which decays electromagnetically to two photons, $\pi^{0} \rightarrow \gamma \gamma$, with a lifetime of $8.4 \times 10^{-17} \mathrm{~s}$. Show that the laboratory photon energy spectrum from pions is flat and compute its boundaries, $\mathrm{E}_{\gamma}^{\min }$ and $\mathrm{E}_{\gamma}^{\max }$. Sketch the spectrum for pions with total lab energy:
a) 135 MeV ; b) 500 MeV ; c) 1 GeV .

3a) Use the Fermi Golden Rule to derive an expression for the differential cross-section, $d \sigma / d \Omega$, for two-particle scattering $\left(\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D} ; m_{\mathrm{A}}=m_{\mathrm{B}}\right)$ in the centre-of-mass frame, in terms of the matrix element \mathcal{M}. b) If the particles are pointlike (i.e. zero size), how should the cross section vary as a function of energy?
4. The ratio of the total cross-section for $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation into hadrons to the $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ $\mu^{+} \mu^{-}$cross-section is called R. a) Derive a formula for R between threshold and $E_{C M}>$ $2 m_{b}$, where m_{b} is the b-quark mass. b) List the processes which contribute to the variation of R between threshold and 200 GeV centre-of-mass energy.
5. The η is a spinless particle of mass 547 MeV which (like the π^{0}, question 2 above) decays electromagnetically to two photons: $\eta \rightarrow \gamma \gamma$. a) Use the Fermi Golden Rule for decays to estimate the lifetime of the η, using the π^{0} as an analogy . b) Given that the full width of the η is 1.2 keV and the branching ratio of its decay to two photons is 39%, discuss critically the assumptions made in your estimate.

