PH5260 - Particle Physics / 2006/07

Post Graduate Problem Set 2

To be handed in at the tutorial on Thursday, November 23, 2006.

1. Fermi motion. The way we make a target of protons and neutrons (nucleons) at rest in the Lab frame is to just use, say, a brick. However the nucleons in a brick are confined inside nuclei, and thus, quantum-mechanically, cannot be at rest. This zero-point motion is called "Fermi motion".
a. Nuclei are typically 5 fm or so in size. Use an uncertainty principle argument to estimate the typical momentum of a nucleon in a nucleus.
Consider 200 GeV muons ($E_{\mu} \gg m_{\mu}=106 \mathrm{MeV}$) incident on the brick. Your answer for part a. should be very small compared with 200 GeV . Yet, very annoyingly, Fermi motion can have a sizeable effect.
b. Consider the nucleon to be moving parallel or antiparallel to the muon beam, with the momentum from part \mathbf{a}. What effect does this have on the centre-of-mass energy (in percent)?
2. Reconsider problem 2 from Problem Sheet 1, on the determination of the lab energy spectrum of the photons from $\pi^{0} \rightarrow \gamma \gamma$ decay. This problem can also be solved using a Monte Carlo technique.
a. Write down the fluxogram for a computer program designed to do this MC calculation, indicating clearly the several different tasks such a program would have to perform.
b. Write the program and run it. Plot the resulting photon energy spectra for $\mathrm{E}_{\pi}=$ i) 135 MeV , ii) 500 MeV , iii) 1 GeV .
3. Consider $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$scattering. Verify that the Mandelstam variables

$$
\begin{aligned}
s & =4\left(k^{2}+m^{2}\right) \\
t & =-2 k^{2}(1-\cos \theta) \\
u & =-2 k^{2}(1+\cos \theta)
\end{aligned}
$$

where θ is the centre-of-mass scattering angle and $k=\left|\overrightarrow{k_{i}}\right|=\left|\overrightarrow{k_{f}}\right|$, where $\overrightarrow{k_{i}}$ and $\overrightarrow{k_{f}}$ are, respectively, the momenta of the incident and scattered electrons in the centre-of-mass frame. Show that the process is physically allowed provided $s \geq 4 m^{2}, t \leq 0$ and $u \leq 0$. Note that $t=0(u=0)$ corresponds to forward (backward) scattering.
4. Consider plane-wave solutions to the Dirac equation, $\psi(x)=a \cdot e^{-i x \cdot p} u(p)$, where a is a normalization factor and $p=(E, \vec{p})$.
a. What are the four independent solutions of the Dirac equation?
(You will have to determine $u(p)$.)
b. Indicate clearly for each solution the particle state that it describes.
(Hint: you may want to recall "helicity")
5. The Dirac gamma matrices γ_{μ} satisfy the anticommutation relations $\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 g_{\mu \nu} \mathbb{1}$, where $g_{\mu \nu}$ is the Minkowski metric tensor. The matrix γ_{5} is defined by $\gamma_{5}=i \gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}$. Using only the information given here (i.e., independently of any specific representation for γ-matrices), show that:
a. $\gamma_{5}^{2}=\mathbb{1}$
b. $\gamma_{5}^{\dagger}=\gamma_{5}$
c. $\left\{\gamma_{\mu}, \gamma_{5}\right\}=0$
(You may also use $\gamma_{\mu}^{\dagger}=\gamma_{0} \gamma_{\mu} \gamma_{0}$.)
6. Use the standard Feynman rules to write down the form of the matrix element for the scattering of an electron of momentum \vec{k} and spin s off a charged pion (as a whole) of momentum \vec{p}.

At what energies (and why) would you expect this simple form of the matrix element to break down?

