PH5260 - Particle Physics / 2006-07

Post Graduate Problem Set 3

To be handed in to PTD by Monday $18^{\text {th }}$ December, 2006.

1. Consider the two-body decay of the (spinless) charged pion into leptons: $\pi^{-} \rightarrow \ell^{-} \overline{\nu_{\ell}}$.
a. Draw the tree-level diagram for this decay;
b. In the rest frame of the pion, what is the helicity of the emitted $\overline{\nu_{\ell}}$? ...and the helicity of the ℓ^{-}? Explain.
c. How do you explain that the electron decay mode is strongly supressed with respect to the muon decay mode?

$$
\begin{array}{|lc|}
\hline & \text { fraction }\left(\Gamma_{i} / \Gamma\right) \\
\hline \pi^{-} \rightarrow \mu^{-} \overline{\nu_{\mu}} & \approx 100 \% \\
\pi^{-} \rightarrow e^{-} \overline{\nu_{e}} & 1.23 \times 10^{-4} \\
\hline
\end{array}
$$

2. The four-momenta k, p and k^{\prime}, p^{\prime} describe, respectively, the initial and final state of electron-muon scattering.

Write down the lowest order Feynman diagram for this process and then use the Feynman rules to determine the corresponding matrix element.
3. The cross-section for electron-muon scattering, in the limit that masses are negligible ("extreme relativistic limit"), is given by

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{2 s}\left[\frac{s^{2}+u^{2}}{t^{2}}\right]
$$

where s, t and u are the usual Mandelstam variables and α is the fine structure constant.
a. From the above, use "crossing" to obtain the differential cross-section for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$ annihilation;
b. Show that the angular distribution is of the form $\left(1+\cos ^{2} \theta\right)$, where θ is the angle between the incoming e^{-}and outgoing μ^{-}directions.

4a. Show in detail that, for $\mathrm{e}^{-} \mu^{+} \rightarrow \mathrm{e}^{-} \mu^{+}$scattering, the spin-averaged matrix element-squared can be written as ${ }^{1}$:

$$
\overline{|\mathcal{M}|^{2}}=\frac{e^{4}}{q^{4}} L_{\text {elec }}^{\mu \nu} L_{\mu \nu}^{\text {muon }}
$$

where

$$
L_{\text {elec }}^{\mu \nu}=\frac{1}{2} \operatorname{Tr}\left\{\left(\not k^{\prime}+m\right) \gamma^{\mu}(k+m) \gamma^{\nu}\right\}
$$

and

$$
L_{\text {muon }}^{\mu \nu}=\frac{1}{2} \operatorname{Tr}\left\{\left(\not p^{\prime}-M\right) \gamma^{\mu}(\not p-M) \gamma^{\nu}\right\}
$$

where $\not p=\gamma^{\mu} p_{\mu}$, and M and m are, respectively, the muon and electron masses.
4b. Hence show that, in the extreme relativistic limit:

$$
\frac{\overline{|\mathcal{M}|^{2}}}{2 e^{4}}=\frac{s^{2}+u^{2}}{t^{2}}
$$

where s, t, u are the usual Mandelstam variables.

[^0]
[^0]: ${ }^{1}$ Spin-averaging and $e^{-} \mu^{-}$scattering are discussed in, e.g., Halzen \& Martin Sections 6.2 and 6.3.

