PH5260 – Particle Physics / 2006-07

Post Graduate Problem Set 3

To be handed in to PTD by Monday 18^{th} December, 2006.

1. Consider the two-body decay of the (spinless) charged pion into leptons: $\pi^- \to \ell^- \bar{\nu_\ell}$. **a.** Draw the tree-level diagram for this decay;

b. In the rest frame of the pion, what is the helicity of the emitted $\bar{\nu}_{\ell}$? ...and the helicity of the ℓ^{-} ? Explain.

c. How do you explain that the electron decay mode is strongly supressed with respect to the muon decay mode?

	fraction (Γ_i/Γ)
$\pi^- \to \mu^- \bar{\nu_\mu}$	$\approx 100\%$
$\pi^- \to e^- \bar{\nu_e}$	1.23×10^{-4}

÷

2. The four-momenta k, p and k', p' describe, respectively, the initial and final state of electron-muon scattering.

Write down the lowest order Feynman diagram for this process and then use the Feynman rules to determine the corresponding matrix element.

¢

3. The cross-section for electron-muon scattering, in the limit that masses are negligible ("extreme relativistic limit"), is given by

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{2s} \left[\frac{s^2 + u^2}{t^2} \right]$$

where s, t and u are the usual Mandelstam variables and α is the fine structure constant.

a. From the above, use "crossing" to obtain the differential cross-section for $e^+e^- \rightarrow \mu^+\mu^-$ annihilation;

b. Show that the angular distribution is of the form $(1 + \cos^2 \theta)$, where θ is the angle between the incoming e^- and outgoing μ^- directions.

4a. Show in detail that, for $e^-\mu^+ \rightarrow e^-\mu^+$ scattering, the spin-averaged matrix element-squared can be written as¹:

$$\overline{\left|\mathcal{M}\right|^2} = \frac{e^4}{q^4} L_{elec}^{\mu\nu} L_{\mu\nu}^{muon}$$

where

$$L_{elec}^{\mu\nu} = \frac{1}{2} Tr\{(k'+m)\gamma^{\mu}(k+m)\gamma^{\nu}\}$$

and

$$L_{muon}^{\mu\nu} = \frac{1}{2} Tr\{(\not p' - M)\gamma^{\mu}(\not p - M)\gamma^{\nu}\}$$

where $p = \gamma^{\mu} p_{\mu}$, and M and m are, respectively, the muon and electron masses.

4b. Hence show that, in the extreme relativistic limit:

$$\frac{\overline{|\mathcal{M}|^2}}{2e^4} = \frac{s^2 + u^2}{t^2}$$

where s, t, u are the usual Mandelstam variables.

¹Spin-averaging and $e^{-}\mu^{-}$ scattering are discussed in, e.g., Halzen & Martin Sections 6.2 and 6.3.