Mixing in the $D^0 - D^0$ decay

Ulrik Egede Imperial College London 13 November 2002

A search for *D*-mixing

- Motivation why is *D*-mixing interesting.
- Formalism.
- Event selection.
- Method for extraction of statistical error.
- Inclusion of systematics.
- What systematics to include.
- Final result and comparisons.

Motivation

- *D*-mixing predicted at low level in Standard Model.
 - A measurable signal would be a strong hint of New Physics.
- As mixing level low the method for finding it is different from methods used for *B*-mixing.
 - We will always see much less than one oscillation.
 - Tagging required to have very high purity.
- As new physics is a likely source there is no reason to assume that *CP* violation will be small.

Motivation

- Only 4 types of mixing possible in meson sector.
- All but *D*-mixing discovered.

Ulrik Egede

Formalism

- We look at the decay $D^0 \to K^+ \pi^-$ and $\overline{D}^0 \to K^- \pi^+$.
 - Production flavour of D^0 tagged by charge of slow pion in decay $D^{*\pm} \rightarrow D^0 \pi^{\pm}$.
 - The decay $D^0 \rightarrow K^+ \pi^-$ (+c.c) is called the wrong sign decay and is either a Doubly Cabibbo suppressed decay or mixing followed by the Cabibbo favoured decay.
- Only time evolution of wrong sign decay can identify mixing in hadronic decays.
- *CP* violation gives different apparent x and y for $D^0 \rightarrow K^+ \pi^-$ and $\overline{D}^0 \rightarrow K^- \pi^+$.

Formalism

• Time evolution of wrong sign decays:

$$\Gamma(t) \simeq \exp\left(-\frac{t}{\tau_{D^0}}\right) \left[\begin{array}{cc} R_D + \sqrt{R_D} y' \frac{t}{\tau_{D^0}} + \frac{x'^2 + y'^2}{4} \frac{t^2}{\tau_{D^0}^2} \end{array} \right]$$

Doubly Cabibbo Interference Mixing suppressed decays

• Rotation in (*x*, *y*) plane due to unknown strong phase difference between the two ways of getting a WS decay.

 $x' = x \cos \delta + y \sin \delta$, $y' = y \cos \delta - x \sin \delta$

- Note that we are only sensitive to y' and x'². In fit we allow x'² to take unphysical negative values.
- Overall rate to wrong sign decay

lrik Egede

$$R_{WS} = \frac{\Gamma(D^0 \to K^+ \pi^-)}{\Gamma(D^0 \to K^- \pi^+)} = R_D + y' \sqrt{R_D} + R_{mix}$$

$$R_{mix} = \frac{x^2 + y^2}{2}$$

A look at the data

- Total luminosity 57.1 fb^{-1} corresponding to about 75 million $c \overline{c}$ events.
- Projections of data:

 $m_{K\pi}$: D^0 candidate mass.

- δm : Mass difference between D^{*+} and D^{0} candidate.
- About 440 wrong sign signal events.

Ulrik Egede

Event selection

- Momentum of D*+ in centre of mass frame above 2.6 GeV/c to select events from the c c continuum.
- Tight particle identification on both D^0 daughters.
- Good track and vertex quality required.
- Lifetime below 4 ps and estimated error below 0.4 ps.

Ulrik Egede

- At least 6 hits on all tracks in Silicon Vertex Tracker (SVT).
- 2 \$\overline\$ and 2 \$\overline\$ hits in first 3 layers of SVT.
- Helicity cut on $\cos \theta^*_{KD^0}$.
- Pion transverse momentum above 0.5 GeV/c for D⁰ daughter.
- Multiple overlapping candidates are rejected.

Event categories

- Background for *D*^{*+} candidates are:
 - True D^0 with a fake slow π^+_s .
 - Combinatorial background.
 - Partially reconstructed D^0 with correct π^+_s .
 - Correctly reconstructed D^0 where K and π hypothesis are swapped.
- Different backgrounds have different lifetime evolution.
- Need to be measured individually to avoid bias of fit.

The time evolution

- The right sign data gives
 D⁰ lifetime and resolution
 model for signal.
- Mixing is any deviation from this in wrong sign sample.
- Unbinned log likelihood fit using:

 $m_{K\pi}, \, \delta m, \, t \, \text{and} \, \sigma_t$

 Minimal use of Monte Carlo events for estimate of signal and background shapes.

Ulrik Egede

Fit quality

- Profile plots like this are used to judge fit quality.
- Top plots are fit to data on linear and log scale.
 - Inset shows selected region in $m_{K\pi}$ and δm .
- Binned χ^2 distribution is in bottom plot.
 - CombinatoricDouble misID D^0 Fake slow π Signal D^0

No DCH

DCH

Ulrik Egede

11

The statistical error

- We do not trust the likelihood surface to give a good estimate of the statistical error due to the unphysical region (x²<0).
 - We use a frequentist method where we map out the contour in the physical region of (x²,y') by toy Monte Carlo samples.
 - Test point is inside 95% contour if above 95% of toy MC's, based on a likelihood value difference estimate, are *better* than data.

Ulrik Egede

• Example of toy MC's created in single test point:

Statistical method

- Simply using likelihood surface not good as:
 - Shape of LL surface depends strongly on true value of mixing.
 - Unphysical region requires some Bayesian approach. Which prior to use?
- In our method we avoid both problems:
 - Pick a test point α_c .
 - Calculate for data

Ulrik Egede

 $\Delta \ln \mathscr{L}^{data}(\boldsymbol{\alpha}_{c}) = \ln \mathscr{L}^{data}(\boldsymbol{\alpha}_{c}) - \ln \mathscr{L}^{data}_{max}$

- Generate multiple toy MC sets *i* with parameters $\alpha_{c.}$
- Fit each of them and calculate

 $\Delta \ln \mathscr{L}^{i}(\boldsymbol{\alpha}_{c}) = \ln \mathscr{L}^{i}(\boldsymbol{\alpha}_{c}) - \ln \mathscr{L}^{i}_{max}$

- If $\Delta \ln \mathscr{L}^{i}(\alpha_{c}) > \Delta \ln \mathscr{L}^{data}(\alpha_{c})$ the toy MC *i* is *better* than the data.
- If above 95% of toy MC's at α_c are better than the data the point is inside the 95% contour.

Likelihood contour

Ulrik Egede

• The 95% statistical contour obtained from the frequentist method can be compared to the contour of the log likelihood with $\Delta \log \mathcal{L}=3$.

14

Systematics + Statistics: How?

- The problem is non-linear so no simple solution.
- For each systematic check we can make a contour.
- Difference between contours added in quadrature to statistical contour.
- This is a conservative approach.

Ulrik Egede

Systematic effects

• Fit:

- Variations in Probability Density Functions of signal and background.
- Assignment of events to signal and background.
- Effect of locked parameters in final fit.
- Event selection:
 - Vary the event selection cuts. Hard to distinguish from statistical fluctuations. This is the dominant systematic.
- Detector effects:
 - Fit for an apparent mixing signal in the right sign sample to check alignment effects.

Results allowing for CP violation

	Fit to D ^o events only			Fit to anti-D ^o events only		
Parameter	Fitted central value		95% C.L	Fitted central value		95% C.L
	x' ² free	x ² physical		x ^{'2} free	x ^{'2} physical	
R _D [%]	0.32	0.35	0.18 < R _D < 0.62	0.26	0.27	0.12 < R _D < 0.56
x'² [·10³]	-0.8	0	x'² < 3.5	-0.2	0	x'² < 3.6
y' [%]	1.7	0.7	-7.5 < y' < 3.4	1.2	0.9	-5.7 < y' < 3.6
R _{ws} [%]	0.39 ± 0.03 (stat) ± 0.03 (syst)			0.32 ± 0.03 (stat) ± 0.04 (syst)		

17

Ulrik Egede

Special case results

- Several assumptions can be made.
- Allows comparison with earlier results.
- Fit with no mixing:
 - Wrong sign decay assumed to be exponential.
 - Only Doubly Cabibbo suppressed decays.
 - Direct *CP* violation: $A_D = \frac{R_D(D^0) R_D(\overline{D}^0)}{R_D(D^0) + R_D(\overline{D}^0)}$

Parameter	
R _D [%]	0.36 ± 0.02 (stat) ± 0.03 (sys)
A _D [%]	9.5 ± 6.1 (stat) ± 8.3 (sys)

Mixing but no *CP* violation

- BaBar result in special case of no *CP* violation.
- Comparison not straight forward between this result and CLEO result (Phys. Rev. Lett. 84:5038-5042, 2000).
- Statistical methods very different.

5	Parameter	Fitted cen	tral value	95% C.L.		
-3		x ^{'2} free	x ^{'2} physical			
	R _D [%]	0.3	0.31	0.22 < R _D < 0.46		
	x'² [·10³]	-0.3	0	x'² < 2.1		
	y' [%]	1.3	0.8	-3.7 < y' < 2.4		
	R _{ws} [%]	0.36 ± 0.03 (stat) ± 0.03 (syst)				

Ulrik Egede

Towards a PRL

- This preliminary result was presented in mid October.
- A few changes required for result to go to PRL.
 - Need to combine contours.
 - Finalise addition of systematics.
- Seriously limited by manpower.
- We have thoughts about writing a NIM article on the statistical method used.

Summary

Ulrik Egede

- Preliminary results on *D*-mixing from 57 fb⁻¹ of data from BaBar presented.
- Results are compatible with no mixing and no *CP* violation.

