
Introduction to ROOTIntroduction to ROOT
Objected-Oriented Data Analysis

In This TutorialIn This Tutorial

l Don’t need to know anything about PAW

l Any C++ code needed for tutorial will be
presented

l Slides, example root files etc can be all found at
http://www.pp.rhul.ac.uk/~taniamc/RootTutorial

OutlineOutline
l Comparison between ROOT and PAW
l CINT
l Setting up environment for ROOT and h2root
l Histograms and Trees (Ntuples)
l INTERACTIVE SESSION 1 – pre-prepared ROOT files

l Presentation of histograms and trees
l Statistics box, legends, text boxes
l Functions: built-in and user-defined
l INTERACTIVE SESSION 2 – presentation and functions

l Macros
l Fitting
l TBrowser – the ROOT graphical interface
l INTERACTIVE SESSION 3 – macros and TBrowser

l Where to get more information
l Summary and wrap-up

Before Starting ROOTBefore Starting ROOT

CINT CINT –– ROOT’sROOT’s C++ InterpreterC++ Interpreter

l CINT is based on C++
l CINT is not a compiler – can do things wrong sometimes

you won’t get warnings
l ROOT needs to be restarted more often than you might like
l Differences between CINT and C++:

– “->” can be replaced with “.”
– the “;” at the end of lines can be omitted in interactive use

(not when running with macros!)
– can use much simpler language to create objects/pointers:

e.g.: TH1F* myHisto = new TH1F; // a 1-D histogram
equivalent to:

TH1F myHisto

ROOT TypesROOT Types

l Familiar C++ objects are there, names:
– basic types: capitalised and have suffix “_t”:

int → Int_t float → Float_t

– Names of classes start with “T”:
TDirectory, TFile, TTree, TH1F, TF1…

l Some ROOT types (classes):
– TH1F - Histogram, containing Float_t objects (floats)
– TDirectory – a directory
– TTree – can store per-event info in branches and leaves
– TF1 – 1-dimensional function, TF2, …

Running ROOTRunning ROOT

Running ROOT and h2rootRunning ROOT and h2root
l Must have ROOTSYS and LD_LIBRARY_PATH set correctly

Foolproof method:
ssh linappserv1 (or any PC running RH7.x)
setenv ROOTSYS /atlas/external/ROOT/v3.03.07/i386_linux24/root
setenv LD_LIBRARY_PATH $ROOTSYS/lib
$ROOTSYS/bin/root

l h2root: ROOT utility for converting from PAW hbook to ROOT

l To convert a file called framework.hbook:
$ROOTSYS/bin/h2root framework.hbook

l Can open a ROOT file when start session:
$ROOTSYS/bin/root myrootfile.root

l Can read in a file at startup which contains your configuration:
$ROOTSYS/bin/root RooLogon.C

CommandsCommands
l CINT commands always start with a dot “.”, e.g:

.q – quit out of ROOT session

.! shellcommand – execute a shell command, e.g.
.! ls //normal unix list command

.? – help, get list of CINT commands

l Tab-completion of commands and filename calls
– can help in finding available commands, e.g.

l TH1F h1 //define a histogram
l h1-> [tab] //lists all available functions of histo

class

ROOT ObjectsROOT Objects

ROOT Canvas and PadROOT Canvas and Pad
l canvas: graphics window where histograms are displayed
l It is very easy to edit pictures on the canvas by clicking and

dragging objects and right-clicking to get various menus
l A ROOT canvas is a TCanvas object
l Default canvas c1 created on first call to Draw()
l Create a canvas with TCanvas canvas;
l Actually: TCanvas *c1=new TCanvas(“c1”,””,800,600);
l Update canvas (if make some changes): canvas->Update();
l Tidy up canvas: canvas->Clear();
l Initially, canvas has one pad which covers whole canvas
l Split canvas into several TPads, e.g.: canvas->Divide(2,2);
l Can plot different histograms on different pads
l Change pad with canvas->cd(n)
l Save the contents of the canvas: canvas->SaveAs(“file.ps”)
l Can save as ps, eps or gif

Files, Histograms & TreesFiles, Histograms & Trees
l Files contain directories, histograms and trees (ntuples)
l Histograms have axes, title, lines, markers, FillStyles, …
l Trees contain branches and leaves

A few file commands:
l Open a file:

TFile f(“myfile.root”);
l Inspect (list) contents with:

f->ls();
l Change into a directory of the file with:

f->cd(“mydirectory”);
l List the histograms in that directory:

gDirectory->ls();
l Plot a histogram in that directory:

histo->Draw();

Histograms IHistograms I

l Declare histogram with:
TH1F myhisto

l Make a first histogram:
TH1F h_name(“h_name”, “h_title”, nbins, xlow, xhi);

h_name = name histo is referenced in ROOT
h_title = name which appears on histo

l Now draw the (currently empty) histo:
h1->Draw();

l Fill with a few entries:
h1->Fill(1.);
h1->Fill(3,10);
h1->Draw(); //do this occasionally to update the histo

Histograms IIHistograms II
l Change the line colour: h1->SetLineColor(kRed);
l Title: h1->SetTitle(“My title”);
l X axis: h1->SetXTitle(“The x axis”);
l Change x-axis range: SetAxisRange(4., 15); //zoom
l Line colours: SetMarkerColor(kBlue); //etc
l Point size: SetMarkerSize(1.);
l Point style: SetMarkerStyle(20); … experiment!!
l Fill colour: (def: white) SetFillColor(kGreen);
l Draw a filled histo: SetFillStyle(3004); // diagonal lines
l Histo with error bars: h1->Draw(“e”); //error = sqrt[nentries]
l Print to screen histo entries: h1->Print(“all”) //can omit “all”
l Usually need to redraw histo after any changes: h1->Draw();

l Second histo on same plot: h2->Draw(“same”);

ROOT Colours, Lines & MarkersROOT Colours, Lines & Markers
l Available colours: h1-> SetLineColor(kRed)

– kWhite=1, kBlack=2, kRed=3, kGreen, kBlue, kYellow,
kMagenta, kCyan, … , 50

l Can define new colours (id num, R, G, B):
– TColor DarkOrchid(610,0.5977,0.1953,0.7969);

l Available line styles: h1->SetLineStyle(1)
– kSolid = 1, kDashed, kDotted, kDashDotted

l Available marker styles: h1->SetMarkerStyle(3)
– kDot=1, kPlus=2, kStar=3, kCircle=4, kMultiply=5, …

kFullCircle=20, kFullSquare=21, kFullTriangleUp=22,
kOpenDiamond=27, kOpenCross=28, kFullStar=29

INTERACTIVE SESSION 1INTERACTIVE SESSION 1
Start ROOT and look at a pre-prepared root file
l Logon to a Unix platform eg linappserv1
l Make a directory to contain the ROOT files and macros for this tutorial
l Copy the example files from my directory (see slide 2 for web location)
l Start up a ROOT session
l Open the file example1.root
l Look at the directory structure of the ROOT file
l Change into the directory named “Manchester Analysis Histograms;1”

and draw a few of the histograms there
– Clear the canvas, plot histo called “h1d2” with a blue line, plot histo called

“h1d3” with a red line on the same plot
– For this histogram, set your own axis labels and title
– Experiment by right-clicking on various parts of the histogram and seeing

the menus that arise, as well as dragging things, etc.
l Close the ROOT session

Trees ITrees I
l ROOT trees (TTree)

– trees have branches – subdirectories
– trees also have leaves – these represent variables and contain data

l Trees (with leaves but not branches) can be thought of like tables:
– rows can represent individual events
– columns (leaves) represent different event quantities

l To view the leaf of a tree (column) (plot as a histogram):
mytree->Print(); //list all variables in the tree
mytree->Draw(“track momentum”); //name of one column
mytree->Draw(“px:py”); //scatter plot
mytree->Draw(“px:py”,”pz>5”); //scatter plot with cut
mytree->Scan(“px:py”,”pz>5”); // Print out values with cut

Statistics BoxStatistics Box

l Default placing – top right
l Various statistics can be displayed,

– histoname, mean, rms, number of entries, …

l To set up the stats box:
gStyle->SetOptStat(); //default settings
gStyle->SetOptStat(0); //no stats box
h1->Draw(); //update canvas
gStyle->SetOptStat(1111111); //turn all options on
h1->Draw();
gStyle->SetOptStat(11); //name & nevents
h1->Draw();

LegendsLegends

l TLegend – key to the lines on a plot

l E.g. for a two-line histo (h1 and h2):
TLegend *myLegend=new TLegend(0.4,0.5,0.7,0.7,”My Legend”);

//x1,y1,x2,y2,header
myLegend -> SetTextSize(0.04);
myLegend->AddEntry(&h2, “Energy B”, “l”); //first arg must be pointer
myLegend->AddEntry(&h1, “Energy A”, “l”);
myLegend->Draw();

l “l” makes ROOT put a line in the entry

Text BoxText Box

l Use text box (TPaveText) write on plots, e.g.:
TPaveText *myText = new TPaveText(0.2,0.7,0.4,0.85, “NDC”);

//NDC sets coords relative to pad
myText->SetTextSize(0.04);
myText->SetFillColor(0); //white background
myText->SetTextAlign(12);
myTextEntry = myText->AddText(“Here’s some text.”);
myText->Draw();

l Greek fonts and special characters:
h1->SetYTitle(“B^{0} #bar{B^{0}}”); //must have brackets for sup
h1->SetTitle(“#tau^{+}#tau^{-}”);

InsetsInsets

l Opening a new pad allows the drawing of insets
– give corners with x1, y1, x2, y2

– draw pad on current canvas
– change focus into pad
– draw on new pad

TPad *npad = new TPad(“npad”, “”, 0.6,0.2,0.9,0.5);
npad->Draw();
npad->cd();
h1->Draw();

FunctionsFunctions

Functions I Functions I –– Maths FunctionsMaths Functions
l ROOT has many predefined functions, e.g.

sin(x), exp(x), …, cd(), ls(), …
l Many of the ROOT classes have associated functions, e.g.

Draw(), Print(), SetXTitle(), …
l Easy to define new ROOT functions, e.g.

1-D function – type is TF1:
TF1 *f1 = new TF1(“f1”, “x*sin(x)”,0,10);

2-D function – type is TF2:
TF2 *f2 = new TF2(“f2”, “y*sin(x)”,0,10,0,20);

l Plot these functions with
f1->Draw(); f2->Draw(“surf4”); //5 surface options for 2D

l Delete a function: f2->Delete(); //frees up name for later use
l The sort of functions you really want are macros…

Functions IIFunctions II
l Can define other functions, syntax like normal C++
l Requirements:

– return type, function name, list of parameters, body of function
l For example:

void HelloWorld(int t)
{
for (int i=1;i<t;i++)

{cout << “Hello World” << endl;}
TFile f(“example1.root”);
f.ls();
}

l When HelloWorld(n) is called, “Hello World” printed n times
l Scope: any quantities defined in function inside {…} exist only

within that function
l Need to save this sort of function in a separate file – a macro…

Functions III Functions III –– separate filesseparate files
l It’s useful (tidy) to define your functions in separate files
l For now, we’ll call these named macros
l Since they’re written in C++, use file extension .cc or .C
l E.g. the HelloWorld example on the previous slide

– save as HelloWorld.cc
l Load functions into an interactive ROOT session with

.L HelloWorld.cc
l Function now available to use in current ROOT session
l Call your function like any other defined function:

HelloWorld(5);
l Can define several functions in a single file
l Can overload the functions (I.e. have two functions with same name,

but different parameter lists – this can be very useful!)
l See your function in existence: .functions lists all available

functions (of which there are many!)

INTERACTIVE SESSION 2INTERACTIVE SESSION 2

INTERACTIVE SESSION 2INTERACTIVE SESSION 2
Maths functions and named macros
l Make a ROOT canvas
l Define the function cos(x)*sin(x) on range (0,100) and plot it
l Draw the function 1/x*sin(x) on the same canvas
l Add a legend to your plot for the two contributions
l Draw the two functions on separate pads on the same canvas

and put titles on both
l Save your final product as an EPS file

– Clear the canvas, define the 2D function cos(x)*sin(y) over
(0,100) in x and (0,200) in y and plot it experimenting with the
various surf options

– Add an inset showing the plot in the region (0,10) and (0,20)
l Save this plot as a PS file and check it with ghostview
l Write a macro to do the 1D parts of this session

– Hint: scope means need a SaveAs, also should make Canvas
– edit the macro so that, depending on the parameter passed, it’ll

do either the 1D parts of this session or the 2D parts

MacrosMacros

Macros IMacros I
l Lots of commands you’ll want to repeat often

– save them in a “macro” file
– just a bunch of commands in file, enclosed in {…}

l These are un-named macros: Syntax:
{
TFile f(“example.root”);
f->ls();
TCanvas c1;
f->cd(“Manchester Analysis Histograms;1”);
gDirectory->ls();
h1d2->Draw();
c1->SaveAs(“test.ps”);
}

l Save as, e.g. myMacro.cc

Macros IIMacros II
l execute un-named macro:

.x myMacro.cc
l Runs all the commands in that file
l Combine named and un-named macros – build up an analysis job!
l Macros can call and use other macros
l Syntax to load a macro from a file:

gROOT->LoadMacro(“myFile.cc”); (formal form of .L
myFile.cc)

l If you will use the function frequently, better to have named macro
(function) – particularly if you want options

l Scope works the same as in C++ – anything defined in a macro
exists only inside that macro

Selection FunctionsSelection Functions

l For analysing ntuples(TTrees), may want to:
– Book some histograms
– Read in an event
– Loop over particles
– Fill some histograms
– Manipulate some quantities
– Make some cuts etc….

l ROOT can make a template class for you to do
all this.

Selection FunctionsSelection Functions
l Template creation:

– T->MakeSelector(“myselect”)
l Creates in your working directory 2 files:

– myselect.C (put your analysis code here)
– myselect.h (defines all the variables available in the tree)
– BEWARE: It will overwrite files of the same name which exist

there!
l myselect.C contains member functions with specific

purposes:
– Begin: Put code here for things you want done at the beginning

of the job (eg booking histograms). Executed once per job.
– ProcessCut: Executed once per event. Put

cuts/analysis/histogram filling here. Return either kFALSE or
kTRUE.

– ProcessFill: Executed only if kTRUE returned from ProcessCut.
– Terminate: Called at end of job.

Selection FunctionsSelection Functions
l Example:
void myselect::Begin(TTree *tree)
{

// Function called before starting the event loop.
// Initialize the tree branches.

Init(tree);
//Book a histogram

TH1F *Energy = new TH1F(“Energy”,”Energy”,50,0.0,0.5);
}
void myselect::ProcessCut(Int_t entry)
{

//Read complete tree entry
fChain->GetTree()->GetEntry(entry);

//Apply some cuts
if (Ntracks<4) return kFALSE;
return kTRUE;

}

Selection FunctionsSelection Functions
void myselect::ProcessFill(Int_t entry)
{

for (Int_t iTrack=0; iTrack<Ntracks; iTrack++){
TH1F *h1 = (TH1F*)gDirectory->FindObject(Energy);
Energy->Fill(E(iTrack);
}

}
void myselect::Terminate()
{

cout << “Job ended” << endl;
// Could write out a file of summary histograms here for example

}

Selection FunctionsSelection Functions
l To execute selection function:

T.Process(“myselect.C”)
or

T.Process(“myselect.C”,”some options”)
(You can get the options in your code

TString option=GetOption()
and query it using the TString class).

l If you have multiple ntuples, create a chain:
TChain chain(“T”);
chain.Add(“file1.root”);
chain.Add(“file2.root”);
chain.Process(“myselect.C”);

Fitting 1D FunctionsFitting 1D Functions
l Fitting in ROOT based on Minuit (ROOT class: TMinuit)
l ROOT has 4 predefined fit functions, e.g.

gaus: f(x)=p0exp{-½[(x-p1)/p2]2} //3 params
l Fitting a histogram with pre-defined functions, e.g.

h1->Fit(“gaus”); //landau, exp0, pol0->pol9
h1->Fit(“landau”, “R”,””, 3.,15);
– “R” says ‘fit only in range xmin → xmax’

l User-defined: 1-D function (TF1) with parameters:
TF1 *myFit= new TF1(“myfit”,”[0]*sin(x) +[1]*exp(-[2]*x)”,0,2);

l Set param names (optional) and start values (must do):
myFit->SetParName(0,”paramA”);
myFit->SetParameter(0,0.75); //start value for param [0]

l Fit a histo:
myHist->Fit(“myfit”);

Fitting IIFitting II
l Fitting with user-defined functions:

double myfunc(double *x, double *par)
{ double arg=0;

if (par[2]!=0) arg=(x[0]-par[1])/par[2];
return par[0]*TMath::Exp(-0.5*arg*arg);

}
l double *x is a pointer to an array of variables

– it should match the dimension of your histogram
l double *p is a pointer to an array of parameters

– it holds the current values of the fit parameters
l Now in a root session:

.L myfunc.cc
TF1 *f1=new TF1(“f1”,myfunc,-1,1,3);
h1->SetParameters(10, h1->GetMean(), h1->GetRMS());
h1->Fit(“f1”);

Fitting III Fitting III –– The Fit PanelThe Fit Panel

l Start a fit panel for your histo with:
h1d1->FitPanel();

l ROOT’s fitting functions available at the click of a button

l Best part – slide panel – restrict fit range by grabbing
edges of slide panel (bit just above “Fit” button) and
watch lines showing fit range on your histo

l Update fit by hitting “Fit” button

Graphical InterfaceGraphical Interface

TBrowser TBrowser –– the ROOT GUIthe ROOT GUI

l The TBrowser is the ROOT graphical interface

l It allows quick inspection of files, histograms
and trees

l Make one with:
TBrowser tb;

l More formally:
TBrowser *tb = new TBrowser;

Using the TBrowserUsing the TBrowser

l Start in ROOT with:
TBrowser tb;

l Any files already opened will be in the ROOT files directory
l Directory ROOT session started in will be shown too
l Otherwise click around your directories to find your files
l Click to go into chosen directory
l Double-click on any ROOT files you want to look at (you

won’t see an obvious response)
l Now go into the ROOT files directory
l Selected files now there
l Can click around files, directories, trees
l Can view histograms and leaves

INTERACTIVE SESSION 3INTERACTIVE SESSION 3

INTERACTIVE SESSION 3INTERACTIVE SESSION 3
Macros and the TBrowser
l Write a macro to

– plot the function cos(x) as a histogram
Hint: (f1->GetHistogram())->Draw(); TH1F f1hist=(TH1F)(f1->Get…)

– fit it with a polynomial of degree 8
– fit it with a Gaussian over one half period
– define a function which a weighted sum of 1, cos(x/3),

x*cos(x/5), and refit over 0->20
– experiment with the fit panel – look at different fit functions over

different ranges
l (If time permits) Write and run an unnamed macro to load your

named macro from Session 2 and plot the 1D bits from Session 1
l Make a TBrowser
l Have a look around example1.root
l Split the canvas and plot several tree variables from ntp13 on the

same pad and on separate pads, using:
– the graphical interface (clear canvas, and split it –you’ll need to

look around)
– the command line to change focus on pads

Final CommentsFinal Comments

Where to Get More InformationWhere to Get More Information
l The ROOT homepage: http://root.cern.ch/

– examples, HOWTOs, tutorials, class information, ROOT source code
– RootTalk mailing list – high traffic, great search facility

l It is searchable: http://root.cern.ch/root/Search.phtml
– Eg Go here and type in a class name to see the class definition and

member functions.
l Fermilab’s three-day ROOT course http://patwww.fnal.gov/root

