Introduction to ROOT
Objected-Oriented Data Analysis

In This Tutonal

e Don’t need to know anything about PAW

e Any C++ code needed for tutorial will be
presented

e Slides, example root files etc can be all found at
http://www.pp.rhul.ac.uk/~taniamc/Root T utorial

Outllne

e Comparison between ROOT and PAW

CINT

Setting up environment for ROOT and h2root

Histograms and Trees (Ntuples)

INTERACTIVE SESSION 1 — pre-prepared ROQOT files

Presentation of histograms and trees

Statistics box, legends, text boxes

Functions: built-in and user-defined

INTERACTIVE SESSION 2 — presentation and functions

Macros

Fitting

TBrowser —the ROOT graphical interface
INTERACTIVE SESSION 3 — macros and TBrowser

Where to get more information
Summary and wrap-up

Before Starting ROOT

CINT — ROOT's C++ Interpreter

CINT i1s based on C++

e CINT isnot acompiler — can do things wrong sometimes
you won't get warnings
e ROOT needs to be restarted more often than you might like
e Differences between CINT and C++:
— “->" can bereplaced with “.”
— the*;” a the end of lines can be omitted in interactive use
(not when running with macros!)
— can use much ssimpler language to create objects/pointers:
e.g.. TH1F* myHisto = new TH1F; // a1-D histogram
equivalent to:
TH1F myHisto

ROOT Types

e Familiar C++ objects are there, names:
— basic types. capitalised and have suffix “_t”:
int ® Int t float ® Float_t
— Names of classes start with “T”:
TDirectory, TFile, TTree, TH1F, TF1...

e Some ROOT types (classes):
— THI1F - Histogram, containing Float_t objects (floats)
— TDirectory — adirectory

— TTree— can store per-event info in branches and leaves
— TF1-1-dimensional function, TF2, ...

Running ROOT

Running ROOT and h2root

Must have ROOTSYSand LD LIBRARY_ PATH set correctly
Foolproof method:
ssn linappservl (or any PC running RH7.x)
setenv ROOT SY S /atlas/exter nal/ROOT/v3.03.07/i386 _linux24/r oot
setenv LD _LIBRARY_PATH $ROOTSY Slib

SROOTSY Sbin/root
h2root: ROOT utility for converting from PAW hbook to ROOT

To convert afile called framework.hbook:
$ROOTSY Sbin/h2root framewor k.hbook

Can open a ROQT file when start session:
PROOTSY Sbin/root myrootfile.r oot

Canread in afile at startup which contains your configuration:
$ROOTSY Sbin/root RoolL ogon.C

Commands

e CINT commands aways start with adot “.”, e.q:
.J— quit out of ROOT session
! shellcommand — execute a shell command, e.g.
Als /Inormal unix list command
.?—help, get list of CINT commands

e Tab-completion of commands and filename calls
— can help in finding available commands, e.g.
e THIF hl //define ahistogram

e h1->[tab] //listsall available functions of histo
class

ROQOT Objects

ROOT Canvas and Pad

canvas. graphics window where histograms are displayed

It isvery easy to edit pictures on the canvas by clicking and
dragging objects and right-clicking to get various menus

A ROOT canvasisaTCanvas object

Default canvas cl created on first call to Draw()

Create a canvas with TCanvas canvas,

Actually: TCanvas*cl=new TCanvas(“cl’,””,800,600);
Update canvas (if make some changes): canvas->Update();
Tidy up canvas. canvas->Clear();

Initially, canvas has one pad which covers whole canvas
Split canvas into several TPads, e.q.: canvas->Divide(2,2);
Can plot different histograms on different pads

Change pad with canvas->cd(n)

Save the contents of the canvas. canvas->SaveAs(“file.ps’)
Can save as ps, epsor gif

Files, Histograms & Trees

e Filescontain directories, histograms and trees (ntuples)
e Histograms have axes, title, lines, markers, FillStyles, ...
e Trees contain branches and leaves

A few file commands.

e Open afile:
TFilef(“ myfile.root”);

e Inspect (list) contents with:
f->15);

e Change into adirectory of the file with:
f->cd(* mydirectory”);

e List the histogramsin that directory:
gDirectory->19();

e Plot ahistogram in that directory:
histo->Draw();

Histograms |

Declare histogram with:
TH1F myhisto
Make afirst histogram:

TH1F h_name(*h_name’, “h_title’, nbins, xlow, xhi);
h _name = name histo is referenced in ROOT

h_title = name which appears on histo
Now draw the (currently empty) histo:

h1->Draw();

Fill with afew entries:
h1->Fill(1.);
h1->Fill(3,10);
h1->Draw();

//do this occasionally to update the histo

Histograms I

Change theline colour: h1->SetLineColor (kRed);

Title: h1l->SetTitle(" My title”);

X axis: h1->SetXTitle(* The x axis’);
Change x-axisrange: SetAxisRange(4., 15); //zoom

Line colours: SetMarker Color (kBlue); //etc

Point size: SetM arker Size(1.);

Point style: SetM arker Style(20); ... experiment!!

Fill colour: (def: white) SetFillColor (kGreen);

Draw afilled histo: SetFillStyle(3004); // diagonal lines

Histo with error bars. hl->Draw(“e"); //error = sgrt[nentries]
Print to screen histo entries. h1->Print(*all”) //can omit “all”
Usually need to redraw histo after any changes. h1->Draw();

Second histo on same plot: h2->Draw(“same”);

ROOT Colours, Lines & Markers

e Avallable colours: hl-> SetlineColor(kRed)

— kWhite=1, kBlack=2, kRed=3, kGreen, kBlue, kY €low,
kMagenta, kCyan, ..., 50

e Can define new colours (id num, R, G, B):
— TColor DarkOrchid(610,0.5977,0.1953,0.7969);

e Avallableline styles. hl->SetLineStyle(1)
— kSolid = 1, kDashed, kDotted, kDashDotted

e Available marker styles. hl->SetMarkerStyle(3)

— kDot=1, kPlus=2, kStar=3, kCircle=4, kMultiply=5, ...
KFull Circle=20, kFullSquare=21, kFull TriangleUp=22,
kOpenDiamond=27, kOpenCross=28, kFull Star=29

INTERACTIVE SESSION 1

Start ROOT and look at a pre-prepared root file

Logon to a Unix platform eg linappservl

Make a directory to contain the ROOT files and macros for this tutorial
Copy the example files from my directory (see dide 2 for web location)
Start up aROOT session

Open the file examplel.root

Look at the directory structure of the ROQOT file

Change into the directory named “Manchester Analysis Histograms; 1”
and draw afew of the histograms there

— Clear the canvas, plot histo called “h1d2” with ablue line, plot histo called
“h1d3” with ared line on the same plot

— For this histogram, set your own axis labels and title

— Experiment by right-clicking on various parts of the histogram and seeing
the menus that arise, aswell as dragging things, etc.

Close the ROOT session

Trees |

e ROQOT trees (TTree)

— trees have branches — subdirectories

— trees also have |eaves — these represent variables and contain data
e Trees(with leaves but not branches) can be thought of like tabl es:

— rows can represent individual events

— columns (leaves) represent different event quantities

e Toview theleaf of atree (column) (plot as ahistogram):

mytree->Print(); /llist dl variablesinthetree
mytree->Draw(" track momentum”); //name of one column
mytree->Draw(“ px:py”); //scatter plot
mytree->Draw(“ px:py”,” pz>5”); //scatter plot with cut

mytree->Scan(® px:py”,” pz>5"); // Print out values with cut

Statistics Box

e Default placing —top right
e Various statistics can be displayed,
— histoname, mean, rms, number of entries, ...

e T0 set up the stats box:

gStyle->SetOptStat (); //default settings
gStyle->SetOpt Stat(0); //no stats box
h1->Draw(); //update canvas
gStyle->SetOptStat(1111111); //turn all options on
h1->Draw();

gStyle->SetOptStat(11); //name & nevents

h1->Draw();

Legends

e TLegend—key to thelines on aplot

e E.g. for atwo-line histo (h1 and h2):
TLegend *myL egend=new TLegend(0.4,0.5,0.7,0.7,” My Legend”);
IIx1,y1,x2,y2,header
myL egend -> SetTextSize(0.04);
myL egend->AddEntry(&h2, “Energy B”, “I”); //first arg must be pointer
myL egend->AddEntry(& hl, “Energy A”, “I”);
myL egend->Draw();

e “|” makes ROOT put alinein the entry

Text Box

e Use text box (TPaveText) write on plots, e.q.:

TPaveText *myText = new TPaveT ext(0.2,0.7,0.4,0.85, “NDC");
[/INDC sets coordsrelative to pad

myText->SetTextSize(0.04);

myText->SetFillColor (0); //white background

myText->SetTextAlign(12);

myTextEntry = myText->AddText(“ Here' s some text.”);

myText->Draw();

e Greek fonts and special characters:
h1->SetYTitle(* BMN{0} #bar{B"{0}}"); //must have bracketsfor sup
h1->SetTitle(" #tau™{+}#tau™{-}");

Insets

e Opening a new pad allows the drawing of insets
— give cornerswith x, yq, X5, ¥
— draw pad on current canvas
— change focus into pad

— draw on new pad
TPad *npad = new TPad(“npad’, “”, 0.6,0.2,0.9,0.5);
npad->Draw();
npad->cd();
h1->Draw();

Functions

Functions | — Maths Functions

ROOQOT has many predefined functions, e.g.
sin(x), exp(x), ..., cd(), Is), ...
Many of the ROOT classes have associated functions, e.g.
Draw(), Print(), SetXTitle(), ...
Easy to define new ROQOT functions, e.g.
1-D function —typeis TF1.
TF1*fl=new TF1(*f1", “x*sin(x)”,0,10);
2-D function —typeis TF2:
TF2*f2=new TF2(*f2", “y*sin(x)”,0,10,0,20);
Plot these functions with
f1->Draw(); f2->Draw(“surf4”); //5 surface options for 2D
Delete afunction: f2->Delete(); //frees up name for later use
The sort of functions you really want are macros...

Functions Il

e Can define other functions, syntax like normal C++
Requirements:

— returntype, function name, list of parameters, body of function
e [or example:
void Helloworld(int t)
{
for (int I=1;i<t;i++)
{cout << “HelloWorld” << endl;}
TFilef(“examplel.root”);

BEVK

}
e When HelloWorld(n) iscalled, “Hello World” printed n times

e Scope: any quantities defined in functioninside{...} exist only
within that function

e Needto save this sort of function in a separate file—a macro...

Functions Il — separate files

It's useful (tidy) to define your functions in separate files
For now, we'll call these named macros
Since they’re written in C++, usefile extension .ccor .C
E.g. the HelloWorld example on the previous dide
— saveasHellowWorld.cc
Load functions into an interactive ROOT session with
L Helloworld.cc
Function now available to use in current ROOT session
Call your function like any other defined function:
HelloWworld(5);
Can define several functionsin asinglefile

Can overload the functions (I.e. have two functions with same name,
but different parameter lists— this can be very useful!)

See your function in existence: .functions listsall available
functions (of which there are many!)

INTERACTIVE SESSION 2

INTERACTIVE SESSION 2

M aths functions and named macros

Make a ROOT canvas

Define the function cos(x)*sin(x) on range (0,100) and plot it
Draw the function 1/x*sin(x) on the same canvas

Add alegend to your plot for the two contributions

Draw the two functions on separate pads on the same canvas
and put titles on both

Save your final product as an EPSfile
— Clear the canvas, define the 2D function cos(x)*sin(y) over
(0,100) in x and (0,200) in y and plot it experimenting with the
various surf options
— Add an inset showing the plot in the region (0,10) and (0,20)
Save this plot as a PS file and check it with ghostview
Write a macro to do the 1D parts of this session
— Hint: scope means need a SaveAs, also should make Canvas

— edit the macro so that, depending on the parameter passed, it’ll
do either the 1D parts of this session or the 2D parts

Macros

Macros |

e Lotsof commandsyou'll want to repeat often

— savethemin a“macro” file

— just a bunch of commandsin file, enclosed in {...}
e These are un-named macros. Syntax:

{

TFilef(* example.root™);

f->15();

TCanvas cl;

f->cd(* Manchester AnalysisHistograms;1”);
gDirectory->Is();

h1d2->Draw();

cl->SaveAs(“test.ps’);

}

e Saveas, e.g. myMacro.cc

Macros Il

execute un-named macro:
X myMacro.cc
Runs all the commands in that file
Combine named and un-named macros— build up an analysis job!
Macros can call and use other macros
Syntax to load a macro from afile:
gROOT->LoadMacro(“ myFile.cc’); (formal form of .L
myFile.cc)

If you will use the function frequently, better to have named macro
(function) — particularly if you want options

Scope works the same as in C++ — anything defined in a macro
exists only inside that macro

Selection Functions

e For analysing ntuples(T Trees), may want to:
— Book some histograms
— Read in an event
— Loop over particles
— Fill some histograms
— Manipulate some quantities
— Make some cuts etc....

e ROOT can make atemplate class for you to do
all this.

Selection Functions

e Template creation:
— T->MakeSdlector (“ myselect”)
e Createsin your working directory 2 files:
— myselect.C (put your analysis code here)
— myselect.h (defines @l the variables available in the tree)

— BEWARE: It will overwrite files of the same name which exist
therel
e myselect.C contains member functions with specific
PUrpOSES.
— Begin: Put code here for things you want done at the beginning
of the job (eg booking histograms). Executed once per job.

— ProcessCut: Executed once per event. Put
cuts/analysig’histogram filling here. Return either KFALSE or
KTRUE.

— ProcessFill: Executed only if KTRUE returned from ProcessCut.
— Terminate: Called at end of job.

Selection Functions

e Example:
void myselect::Begin(TTree *tree)
{
// Function called before starting the event loop.
/[Initialize the tree branches.
| nit(tree);
//Book a histogram
TH1F *Energy = new TH1F(* Energy”’,” Energy” ,50,0.0,0.5);

}
void myselect: : ProcessCut(I nt_t entry)

{
//Read complete tree entry
fChain->GetTree()->GetEntry(entry);
//Apply some cuts
If (Ntracks<4) return KFALSE;
return KTRUE;

}

Selection Functions

void myselect:: ProcessFill(Int_t entry)
{
for (Int_tiTrack=0; iTrack<Ntracks; iTrack++){

TH1F *h1 = (TH1F*)gDirectory->FindObject(Energy);
Energy->Fill(E(iTrack);
}

}

void myselect:: Terminate()

{
cout << “Job ended” << endl;
/I Could write out a file of summary histograms here for example

}

Selection Functions

e To execute selection function:
T.Process(“ myselect.C’)

or
T.Process(* myselect.C”,” some options’)
(Y ou can get the options in your code

TString option=GetOption()

and query it using the TString class).

e |f you have multiple ntuples create a chain:
TChain chain(* T");
chain.Add(“ filel.root”);
chain.Add(* file2.root”);
chain.Process(* mysdlect.C’);

Fitting 1D Functions

Fitting in ROOT based on Minuit (ROQOT class: TMinuit)
ROOT has 4 predefined fit functions, e.g.
gaus: f(X)=poexp{-¥4(x-py)/p 12 /I3 params
Fitting a histogram with pre-defined functions, e.g.
h1l->Fit(“gaus’); //landau, exp0, polO->pol9
h1->Fit(“landau”, “R","", 3.,15);
— “R” says‘fit only in range xmin® xmax’
User-defined: 1-D function (TF1) with parameters.
TF1*myFit= new TF1(“myfit”,” [0]*sin(X) +[1]*exp(-[2]*X)" ,0,2);
Set param names (optional) and start values (must do):
myFit->SetPar Name(0,” paramA”);
myFit->SetParameter (0,0.75); [/start value for param [O]
Fit ahisto:
myHist->Fit(“ myfit”);

Flttlng]

Fitting with user-defined functions:
double myfunc(double *x, double *par)
{ double arg=0;
If (par[2]!'=0) arg=(x[0]-par[1])/par[2];
return par[O]* TMath::Exp(-0.5*arg*arg);
}

e double*x isapointer to an array of variables
— 1t should match the dimension of your histogram

e double*p isapointer to an array of parameters
— It holds the current values of the fit parameters

e NOw In aroot session:
L myfunc.cc
TF1*fl1=new TF1(“f1" ,myfunc,-1,1,3);
h1->SetParameter 5(10, h1->GetMean(), h1->GetRM X)));
h1->Fit(*f1");

Fitting |ll — The Fit Panel

e Start afit panel for your histo with:
h1ld1l->FitPanel();

e ROOT' sfitting functions available at the click of a button

e Best part — dide panel —restrict fit range by grabbing
edges of dide pandl (bit just above “Fit” button) and
watch lines showing fit range on your histo

e Update fit by hitting “Fit” button

Graphical Interface

TBrowser — the ROOT GUI

e The TBrowser isthe ROOT graphical interface

e It allows quick inspection of files, histograms
and trees

e Make one with:
TBrowser tb:

e More formally:
TBrowser *tb = new TBrowser:

Using the TBrowser

e Start in ROOT with:

TBrowser tb;
Any files already opened will be in the ROQOT files directory
Directory ROOT session started in will be shown too
Otherwise click around your directories to find your files
Click to go into chosen directory

Double-click on any ROOT files you want to look at (you
won’'t see an obvious response)

Now go into the ROOT files directory
Selected files now there

Can click around files, directories, trees
Can view histograms and leaves

INTERACTIVE SESSION 3

INTERACTIVE SESSION 3

Macros and the TBrowser
e \Writeamacroto
— plot the function cos(x) as a histogram
Hint: (f1->GetHistogram())->Draw(); TH1F f1hist=(TH1F)(f1->Get...)
— fit it with apolynomial of degree 8
— fit it with a Gaussian over one half period
— define afunction which aweighted sum of 1, cos(x/3),
X* cos(x/5), and refit over 0->20
— experiment with the fit panel —look at different fit functions over
different ranges

o (If time permits) Write and run an unnamed macro to load your
named macro from Session 2 and plot the 1D bits from Session 1

e MakeaTBrowser
e Havealook around examplel.root
e Split the canvas and plot severa tree variables from ntpl3 on the
same pad and on separate pads, using:
— the graphical interface (clear canvas, and split it —you'll need to
look around)

— the command line to change focus on pads

Final Comments

Where to Get More Information

e The ROOT homepage: http://root.cern.ch/
— examples, HOWTOs, tutorials, class information, ROOT source code
— RootTak mailing list — high traffic, great search facility

e Itissearchable: http://root.cern.ch/root/Search.phtml

— Eg Go here and type in a class hame to see the class definition and
member functions.

e Fermilab’ sthree-day ROOT course http://patwww.fnal.gov/root

