Studying QCD in e⁺e⁻ collisions

Part I: jets, event-shapes, α_s , etc.

Glen Cowan

Royal Holloway, University of London

g.cowan@rhul.ac.uk

2001 CTEQ Summer School

St Andrews, Scotland

17–26 June, 2001

Outline

(i) QCD in $e^+e^- \to hadrons$

general theoretical and experimental picture

Monte carlo models

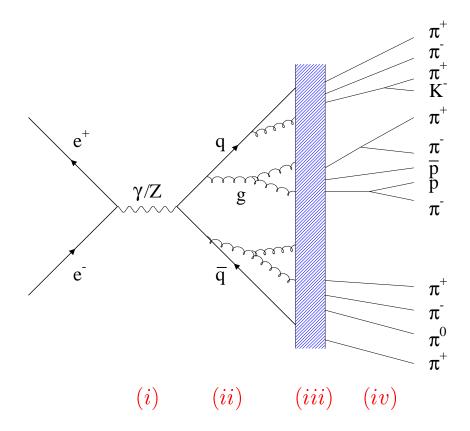
defining observables

(ii) QCD with jets and event-shapes

parton spin $lpha_{
m s}$ from jets and event-shapes running of $lpha_{
m s}$ flavour independence of $lpha_{
m s}$, measuring m_b

- (iii) $lpha_{
 m s}$ from total cross sections and BRs: $R_l,\,R_ au$
- (iv) Conclusions (and what we missed)

- (i) To see if QCD is Nature's theory of strong interactions?Sure, but most already convinced.
- (ii) To measure its free parameters?

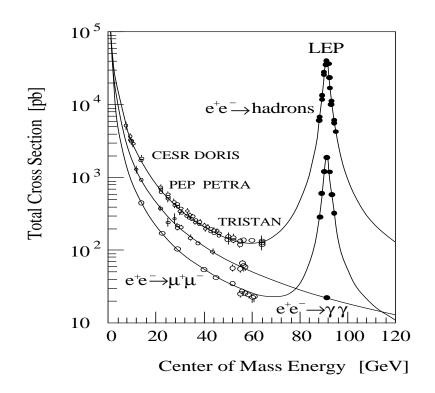

Yes: α_s , quark masses, needed to understand bigger picture.

(iii) To help search for physics beyond the SM?

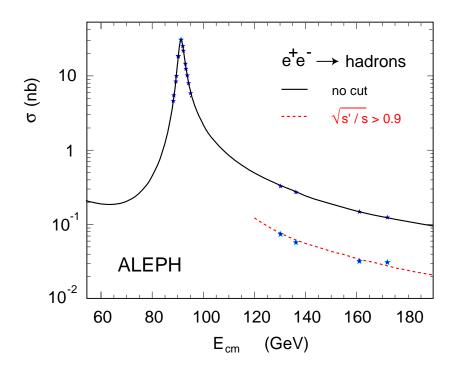
Yes: understand 'QCD background', deviation from firm QCD prediction → new physics

- (iv) Test validity of QCD calculations?
 - Yes, but not usually driving concern.
- (v) Help understand non-perturbative QCD?

Ball (mostly) in theorists' court.

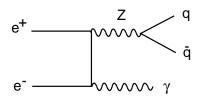

- (i) electroweak
- (ii) perturbative QCD
- (iii) hadronization (non-perturbative QCD)
- (iv) resonance decays

Usually define observable to be sensitive to only one of the above.


QCD with e⁺e⁻ annihilation: the data

SPEAR (1972)	$E_{ m cm}=8~{ m GeV}$
PETRA (1978)	$14 \text{ GeV} < E_{\rm cm} < 44 \text{ GeV}$
PEP (1980)	$E_{\rm cm}=29~{\rm GeV}$
TRISTAN (1987)	$E_{\rm cm}=64~{ m GeV}$
SLC (1989)	$E_{\rm cm}=91~{\rm GeV}$
LEP I (1989)	$E_{\mathrm{cm}}=91~\mathrm{GeV}$

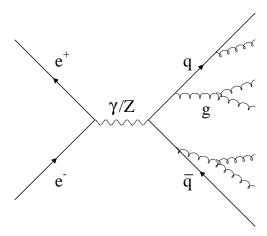
ca. 4×10^6 hadronic events each for ALEPH, DELPHI, L3, OPAL at $E_{\rm cm} \approx M_{\rm Z}$.



LEP II (1996)
$$130 \text{ GeV} < E_{\rm cm} < 208 \text{ GeV}$$

LEP II hadronic cross section $\sim 10^3$ smaller than at Z peak

Many events with initial state photon radiation: $m_{q\overline{q}} \approx M_{\rm Z}$

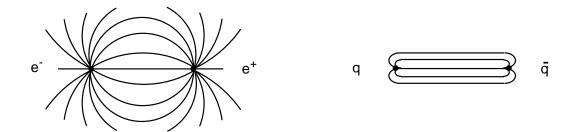

'Background' from $e^+e^- \rightarrow W^+W^- \rightarrow hadrons$

Important for tests of QCD $E_{
m cm}$ dependence

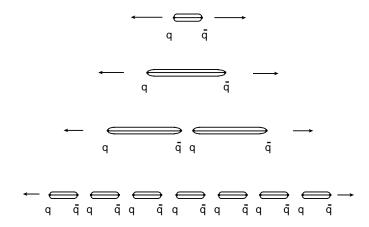
Use random numbers to select a partonic final state and generate all momentum vectors

Usually based on $\mathcal{O}(\alpha_s)$ QCD combined with 'parton shower': leading-log approx. (valid in limit of collinear gluon radiation)

- + angular ordering
- + (sometimes) next-to-leading logs
- +...


 \rightarrow generates set of partons for each event

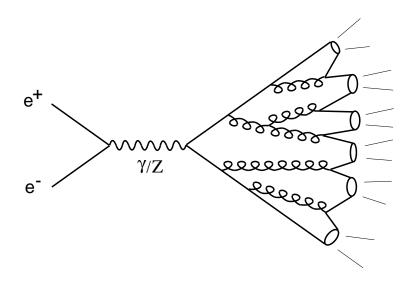
This is perturbative QCD but not at its most accurate. ($\alpha_{\rm s}$ in MC $\neq \alpha_{\rm s}$ in $\overline{\rm MS}$ scheme)


MC with $\mathcal{O}(\alpha_s^2)$ matrix element also available, but without parton shower (max of 4 partons in event)

QCD inspired models (e.g. string) convert partons into hadrons

In contrast to electric charges, 'chromoelectric' field between $q\overline{q}$ pair confined to narrow flux tube (string):

 $q\overline{q}$ production in flux tube \rightarrow string breaks \rightarrow mesons

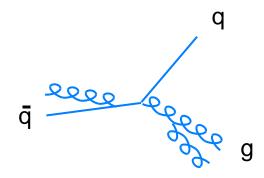

MC generates flavours of $q\overline{q}$ pairs $(u:d:s\approx 1:1:0.3)$ space—time location of breaks \rightarrow momenta of hadrons

Gluons \rightarrow momentum carrying kinks in string

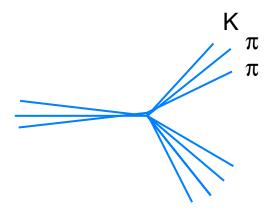
→ 'Lund family' of models: JETSET, ARIADNE, PYTHIA ...

Cluster model (program HERWIG):

parton shower ends with virtual mass of all partons $=Q_0$; gluons split into $q\overline{q}$ pairs; neighbouring q and \overline{q} form colour neutral clusters; clusters (usually) decay isotropically into two hadrons; exceptions allowed for very light and very heavy clusters



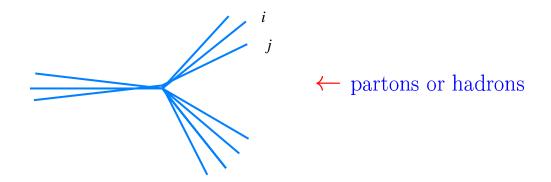
Parameters:


 $\Lambda_{\rm QCD}, Q_0$, quark masses, parameters for treatment of very light/heavy clusters and other tweaks mainly related to flavour production.

Comparing theory and experiment

Need to compare QCD prediction ...

with measurement ...



using appropriately defined jet rates, event-shape variables

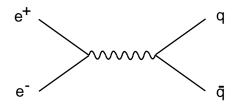
infrared, collinear safe;

not overly sensitive to hadronization effects

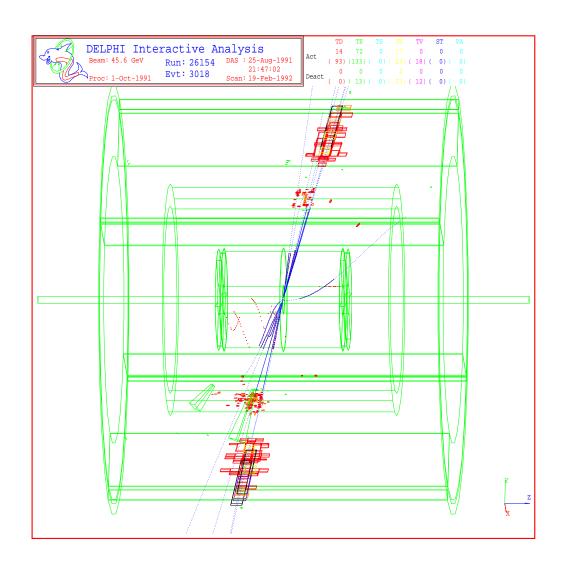
Clustering algorithms: for every pair, compute 'distance' y_{ij}

e.g.
$$y_{ij} = \begin{cases} \frac{2E_i E_j (1 - \cos \theta_{ij})}{s} & \text{(JADE)} \\ \frac{2\min(E_i^2, E_j^2) (1 - \cos \theta_{ij})}{s} & \text{(Durham)} \end{cases}$$

- (i) Find pair with smallest y_{ij}
- (ii) if less than a given y_{cut} , replace i, j with pseudoparticle:

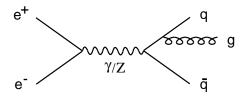

$$p^{\mu}=p_{i}^{\mu}+p_{j}^{\mu}$$
 ('E' scheme)

(iii) iterate until all $y_{ij} > y_{\rm cut}$

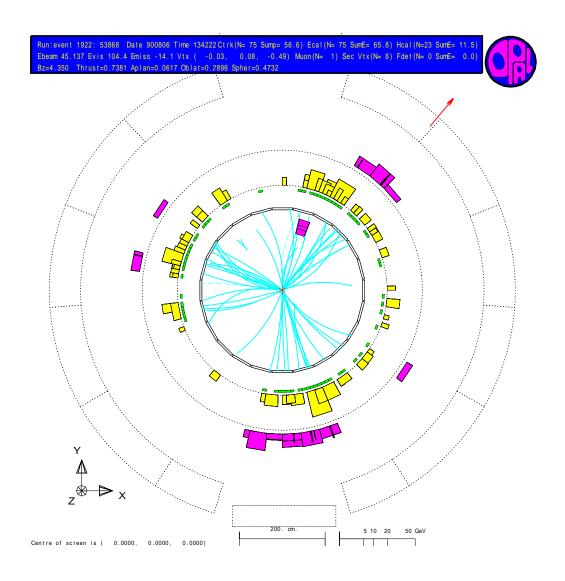

remaining pseudoparticles \rightarrow jets

Other jet definitions also used, e.g., cone algorithm.

 $e^+e^- \rightarrow q\overline{q}$ leads to two back-to-back jets of hadrons

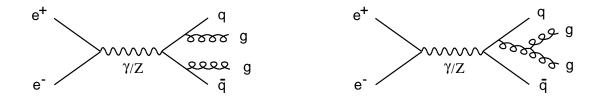


 \rightarrow angular distribution of jets depends on quark spin

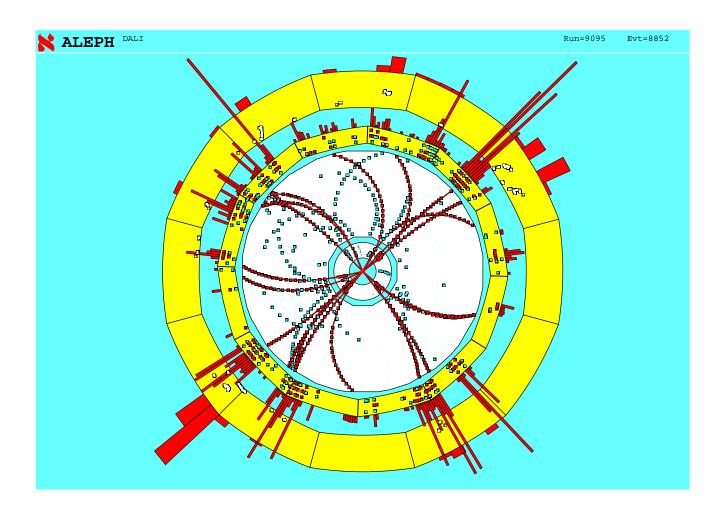


Three-jet events

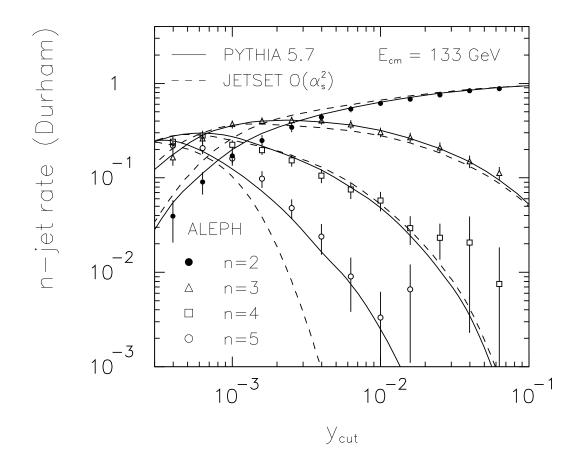
Bremsstrahlung-like gluon radiation (cf. $e^+e^- \rightarrow \mu^+\mu^-\gamma$)



Additional jets \rightarrow rate sensitive to strong coupling $\alpha_{\rm s}$



Multijet events

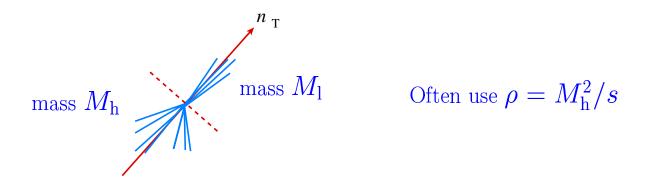

More gluon radiation leads to multijet events

→ sensitive to triple-gluon vertex, non-abelian character of QCD

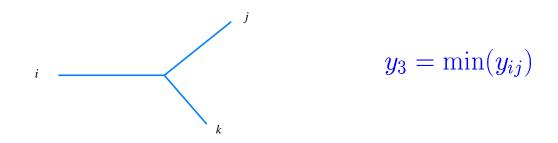
Relative rate of finding n jets for n = 2, 3, 4, 5



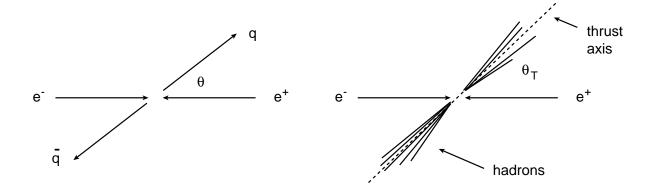
Parton shower based model (PYTHIA) gives good description of multijet rates


 $\mathcal{O}(\alpha_{\mathrm{s}}^2)$ based model has at most 4 partons in final state, falls short for rates of $n \geq 5$ jets

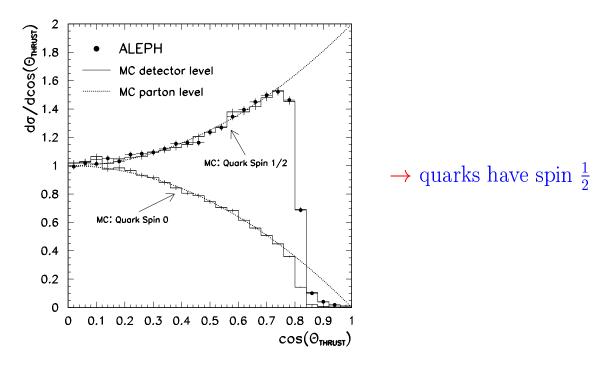
Event-shape variables


Thrust:
$$T = \max \frac{\sum\limits_{i} |\vec{p_i} \cdot \vec{n}_{\mathrm{T}}|}{\sum\limits_{i} |\vec{p_i}|}$$

Heavy jet mass: divide event into hemispheres with thrust axis



 y_3 : cluster event to three jets



distribution of outgoing quark's angle relative to incoming e

$$\frac{d\sigma}{d\cos\theta} \sim \begin{cases} 1+\cos^2\theta & \text{spin-}\frac{1}{2} \text{ quarks} \\ \\ 1-\cos^2\theta & \text{spin-0 quarks} \end{cases}$$

estimate θ with angle of thrust axis (doesn't distinguish q direction)

QCD predictions to $\mathcal{O}(\alpha_{\rm s}^2)$

Consider variable $y = y_3, \rho, 1 - T, \ldots$

$$\frac{1}{\sigma_0} \frac{d\sigma}{dy} = A(y) \frac{\alpha_s(\mu)}{2\pi} + \left[B(y) + 2\pi b_0 A(y) \ln\left(\frac{\mu^2}{s}\right) \right] \left(\frac{\alpha_s(\mu)}{2\pi}\right)^2$$

A(y), B(y) =computable functions

 $\mu = \text{renormalization scale}$

 $d\sigma/dy$ should be independent of μ (to $\mathcal{O}(\alpha_{\mathrm{s}}^2)$)

 \rightarrow this determines the μ dependence of $\alpha_{\rm s}$ (RGE)

$$\frac{1}{\alpha_{\rm s}(\mu)} = \frac{1}{\alpha_{\rm s}(Q)} + b_0 \ln\left(\frac{\mu^2}{Q^2}\right), \qquad b_0 = \frac{33 - 2n_{\rm f}}{12\pi}$$

This μ business

- ullet μ reflects an ambiguity of perturbation theory not a QCD parameter
- Suppose we measure $\alpha_s(\mu)$ with some μ ,

 Use RGE: $\alpha_s(\mu) \to \alpha_s(M_Z)$ resulting $\alpha_s(M_Z)$ still depends on chosen μ since μ dependence only cancels to $\mathcal{O}(\alpha_s^2)$
- Higher order coefficients will contain $\sim \left[\ln\left(\frac{\mu^2}{s}\right)\right]^n$
 - $\rightarrow \mu^2 \approx s$ gives some hope that series is converging.
- But . . . at $\mathcal{O}(\alpha_{\mathrm{s}}^2)$, data best described with $\mu^2 \approx 0.002s$ (!?!)
 - \rightarrow need higher order terms

Resumming large logs

Consider cumulative distribution
$$R(y) = \int_0^y \frac{1}{\sigma} \frac{d\sigma}{dy'} dy'$$

$$\ln R(y) = \alpha_{s}(G_{12} \ln^{2} y + G_{11} \ln y + \ldots)$$

$$+ \alpha_{s}^{2}(G_{23} \ln^{3} y + G_{22} \ln^{2} y + \ldots)$$

$$+ \alpha_{s}^{3}(G_{34} \ln^{4} y + G_{33} \ln^{3} y + \ldots)$$

$$+ \alpha_{s}^{4}(G_{45} \ln^{5} y + G_{44} \ln^{4} y + \ldots)$$

$$+ \ldots$$

leading logs next-to-leading logs

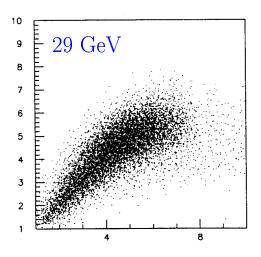
Large logs dominate for $y \to 0$ (two-jet region)

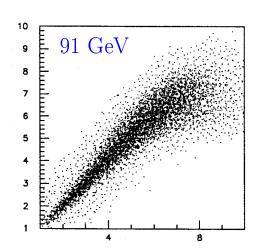
LL and NLL summed to all orders for several variables (including $1-T,\,y_3,\,M_{\rm h}^2/s$)

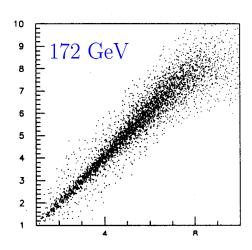
Matching $\mathcal{O}(\alpha_{\mathrm{s}}^2)$ and (N)LL parts:

subtract double-counted part using R or $\ln R$? (difference $\mathcal{O}(\alpha_{\mathrm{s}}^3)$)

Data no longer prefer small μ

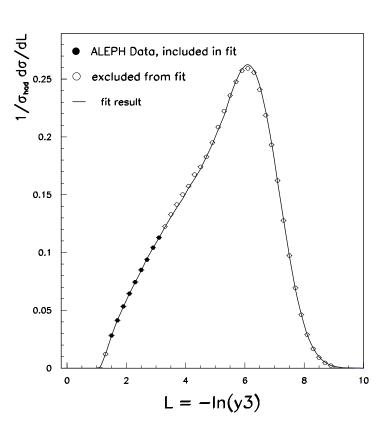

estimate (roughly) magnitude of missing higher orders by varying μ , e.g., $-1 < \ln(\mu^2/s) < 1$


Hadronization corrections


$$\left(\frac{d\sigma}{dy}\right)_{\rm had} ({\rm bin} \ i; \alpha_{\rm s}) = \sum_{j} \left(\frac{d\sigma}{dy}\right)_{\rm QCD} ({\rm bin} \ j; \alpha_{\rm s}) \cdot P_{ij}$$

$$P_{ij} = P \begin{pmatrix} \text{hadron level} & \text{parton level} \\ \text{in bin } i & \text{in bin } j \end{pmatrix} \leftarrow \text{from MC model}$$

e.g. for $-\ln y_3$ hadron vs. parton level (JETSET):

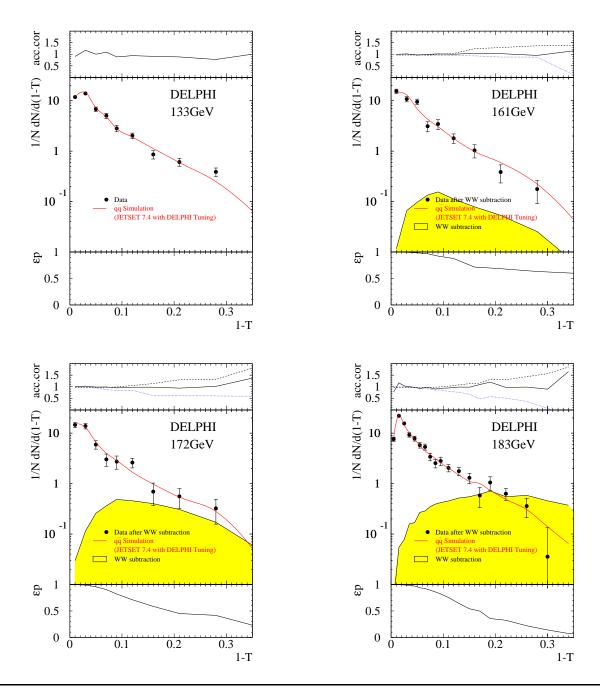


Partons follow hadrons better with increasing $E_{\rm cm}$

Fitting $\alpha_{\rm s}$ to event-shape distributions

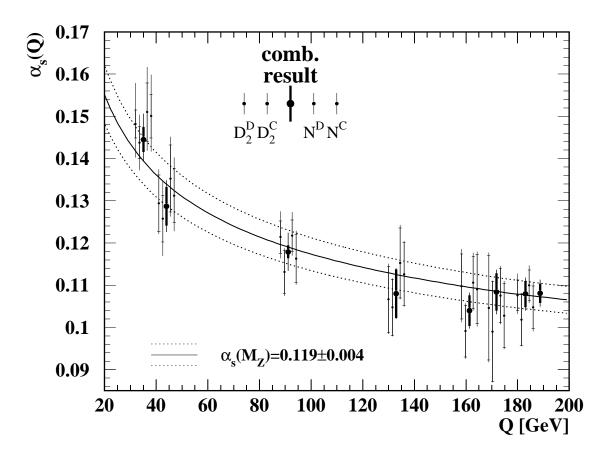
Example with y_3 :

restrict fit range
to three-jet region;
data also well described
outside fit range


$$\alpha_{\rm s}(M_{\rm Z}) = 0.1195 \pm 0.0002 \text{ (stat.)} \pm 0.0038 \text{ (sys.)}$$

Systematic error usually dominated by theory (as here)

hadronization corrections: try different models. missing higher orders: try varying μ in 'reasonable range', vary matching scheme to combine NLLA and $\mathcal{O}(\alpha_{\rm s}^2)$ parts.


Many systematic uncertainties in $\alpha_{\rm s}$ common to all $E_{\rm cm}$

 \rightarrow not a problem for studying running of α_s , but ... LEP II has hadronic events from $e^+e^- \rightarrow W^+W^$ initial state photon radiation, low statistics ...

Event-shape distributions at different $E_{\rm cm}$

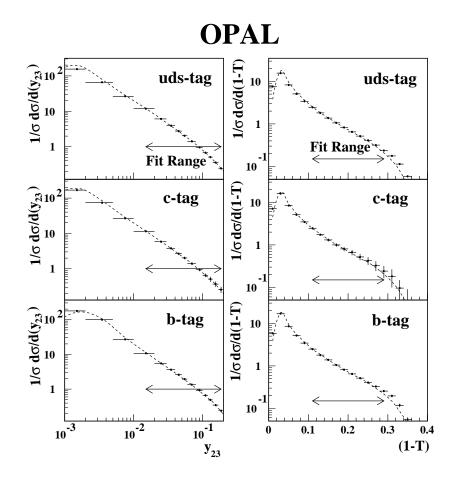
Common α_s measurements by JADE and OPAL experiments

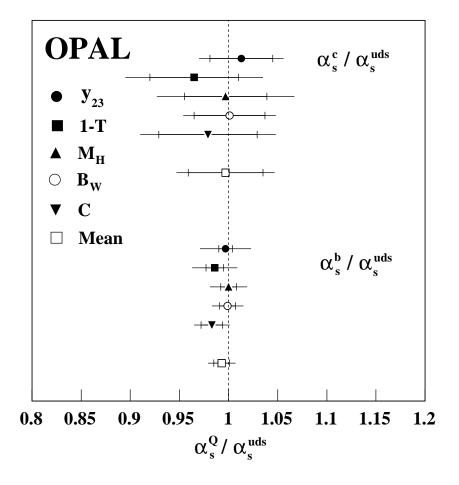
Inner error bars – uncorrelated errors (e.g. stat.)

Outer error bars – total uncertainty

 \rightarrow good agreement with predicted running.

Flavour independence of $lpha_{ m s}$


Does $q\overline{q}g$ coupling depend on quark flavour?


QCD: no. (Still, good to test.)

Select event samples enriched in $b\overline{b}$, $c\overline{c}$ and uds

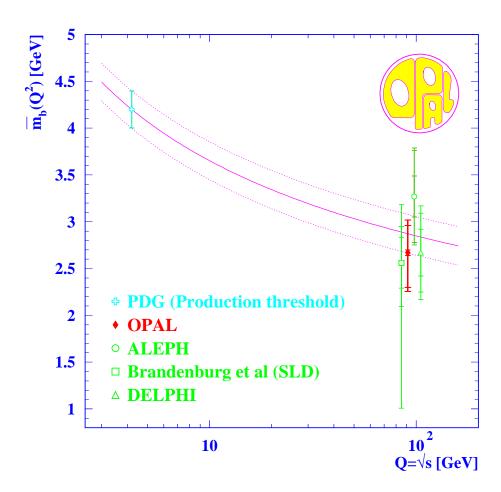
lifetime tag $\rightarrow b$ lifetime antitag $\rightarrow uds$ fast D mesons in jets $\rightarrow c$

Fit $\alpha_{\rm s}^{uds}$, $\alpha_{\rm s}^{c}/\alpha_{\rm s}^{uds}$, $\alpha_{\rm s}^{b}/\alpha_{\rm s}^{uds}$ as separate parameters, use $\mathcal{O}(\alpha_{\rm s}^2)$ including with b, c mass effects.

Averages:

$$\alpha_{\rm s}^c/\alpha_{\rm s}^{uds} = 0.997 \pm 0.038 \text{ (stat.)} \pm 0.030 \text{ (sys.)} \pm 0.012 \text{ (theo)}$$

$$\alpha_{\rm s}^b/\alpha_{\rm s}^{uds} = 0.993 \pm 0.008 \text{ (stat.)} \pm 0.006 \text{ (sys.)} \pm 0.011 \text{ (theo)}$$


 $\rightarrow \alpha_{\rm s}$ flavour independence tested to \sim percent level.

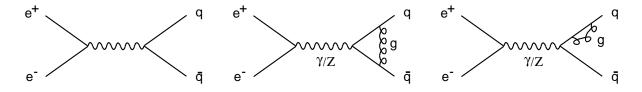
High b-mass suppresses gluon radiation,

same reason less Bremsstrahlung for muons

ightarrow event-shapes, jet-rates differ for $b\overline{b}$, uds events

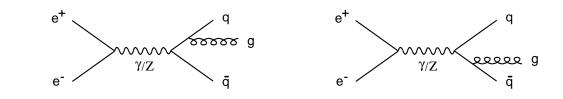
Here $assume \ \alpha_{\rm s}$ flavour independent, fit m_b

Running of mass observed, e.g., OPAL finds


$$m_b(M_{\rm Z}) = 2.67 \pm 0.03 \text{ (stat) } \pm_{0.37}^{0.29} \text{ (sys) } \pm .19 \text{ (theo)}$$

 $\alpha_{\rm s}$ from the total hadronic cross section

$$\sigma(e^+e^- \to hadrons) = \sigma(e^+e^- \to q\overline{q}) +$$


$$\sigma(e^+e^- \to q\overline{q}g) + \dots$$

$$e^+e^- \rightarrow q\overline{q}$$

 \rightarrow ultraviolet divergences

$$e^+e^- \to q\overline{q}g$$

 \rightarrow infrared, collinear divergences

The divergences (almost) cancel, leaving a finite correction

$$\sigma(e^+e^- \to q\overline{q}) + \sigma(e^+e^- \to q\overline{q}g) = \sigma_0\left(1 + \frac{\alpha_s}{\pi} + \ldots\right)$$

works at every order in perturbation theory

 $lpha_{
m s}$ from R_l and $R_ au$

$$R_l = \frac{\Gamma(Z \to \text{hadrons})}{\Gamma(Z \to l\bar{l})} \to \text{(almost) same as } \sigma_{\text{had}}$$
:

= 19.934
$$\left[1 + 1.045 \frac{\alpha_s}{\pi} + 0.44 \left(\frac{\alpha_s}{\pi}\right)^2 - 15 \left(\frac{\alpha_s}{\pi}\right)^3\right]$$

LEP measures $R_l = 20.768 \pm 0.024$

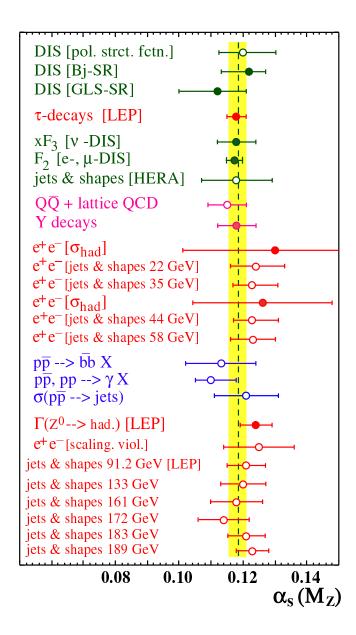
$$\rightarrow \alpha_{\rm s}(M_{\rm Z}) = 0.124 \pm 0.004 \text{ (stat) } \pm ^{0.003}_{0.002} \text{ (theo)}$$

Uncertainties from missing higher orders, Higgs mass

Similarly, decay of virtual W from τ sensitive to QCD corrections

$$R_{\tau} = \frac{\mathcal{B}(\tau^{-} \to \nu_{\tau} \text{ hadrons})}{\mathcal{B}(\tau^{-} \to \nu_{\tau} e^{-} \overline{\nu}_{e})}$$

ALEPH, OPAL average result (Bethke hep-ex/0004021):

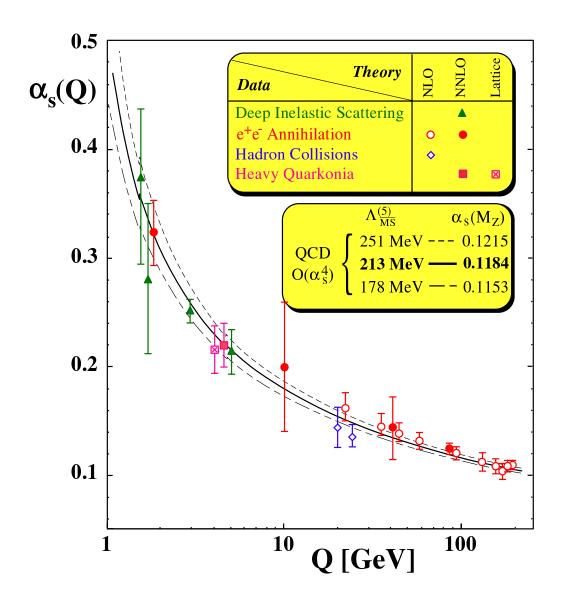

$$\alpha_{\rm s}(m_{\tau}) = 0.323 \pm 0.005 \text{ (exp) } \pm 0.030 \text{ (theo)}$$

Evolve to $M_{\rm Z}$,

$$\alpha_{\rm s}(M_{\rm Z}) = 0.118 \pm 0.001 \text{ (exp) } \pm 0.003 \text{ (theo)}$$

Summary of $\alpha_{\rm s}(M_{ m Z})$

S. Bethke, hep-ex/0004021



Bethke's average (hep-ex/0004021):

$$\alpha_{\rm s}(M_{\rm Z}) = 0.1184 \pm 0.0031$$

Running of $\alpha_{\rm s}(M_{\rm Z})$

S. Bethke, hep-ex/0004021

Last word?

Many QCD predictions are well verified in e⁺e⁻ collilsions, consistent $\alpha_{\rm s}(M_{\rm Z})$ values measured each to several percent from: event-shapes and jet rates, total cross section, τ decays

What we missed

```
\gamma\gamma physics (e<sup>+</sup>e<sup>-</sup> \rightarrow e<sup>+</sup>e<sup>-</sup> + hadrons)
QCD with e<sup>+</sup>e<sup>-</sup> \rightarrow W<sup>+</sup>W<sup>-</sup> \rightarrow hadrons
scaling violations of fragmentation functions
four-jet properties (\rightarrow Bill Gary)
:
```

Next step:

use our knowledge of QCD to discover new physics!

Many thanks for help in preparing this talk to:

Günther Dissertori Michael Schmelling