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BAYESIAN STATISTICAL METHODS FOR PARTONANALYSESGLEN COWANPhysis Department, Royal Holloway, University of London,Egham, Surrey TW20 0EX, UK,E-mail: g.owan�rhul.a.ukThe unertainties in preditions for LHC observables are often dominated by sys-temati e�ets that are diÆult to quantify in the traditional frequentist statistialframework. Unertainties related to parton densities are an important example.DiÆulties with the frequentist approah to this problem are examined and theBayesian alternative is explored.1. IntrodutionTo predit a ross setion that an be measured at a hadron ollider suhas the LHC, one omputes the onvolution of a parton level ross setionwith parton density funtions (PDFs). Unertainties an thus stem fromthe limited order of the perturbatively omputed parton-level ross setionand also from the imperfet modelling of non-perturbative physis throughthe PDFs. Furthermore the parameters entering into the predition aredetermined by �ts to data that themselves have imperfetly understoodsystematis and whih are not in all ases mutually onsistent.Most previous analyses of PDFs have been done using frequentist sta-tistial methods. In this framework one does not speak of the probabilityof a parameter; these rather are treated as onstants whose values mustbe estimated. The PDF parameters are often determined by least-squares�ts using data from deep-inelasti sattering and other proesses. One on-struts a global �2 whose minimum, �2min, determines the �tted parametervalues. The rule from frequentist statistis to obtain the standard devi-ations of the �tted parameters is to vary the parameters until one �nds�2 = �2min + 1. This reipe, however, often results in unrealistially smallerrors in predited ross setions.The apparent failure of the `�2min + 1' rule takes plae beause, in ad-dition to the statistial errors, one an have model unertainties and sys-1
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2tematis that are not fully taken into aount. In order to report realistiestimates for unertainties, several groups produing PDF �ts have ho-sen to allow the �2 to inrease from its minimum by substantially greateramounts, suh as 50 or 100. This results in reasonable error estimatesbut it is an ad ho reipe obtained by extension of a frequentist statistialmethod to a problem for whih it was not designed. The Bayesian statis-tial approah o�ers a more transparent means to inorporate systematiunertainties into predited ross setions.2. The Bayesian approahIn Bayesian statistis, a probability an be assoiated not only with databut also with a hypothesis, e.g,. a hypothesized parameter value. In thisase the probability is interpreted as a degree of belief about where theparameter's true value lies.Suppose the experiments we onsider provide us with a set of data ~y.The probability to obtain these data will be given by a joint probabilitydensity funtion f(~yj~�), where ~� is a set of parameters. In general we anwrite for the expetation value of the ith measurement E[yi℄ = �(xi; �)+bi.Here �(x; ~�) is the predition of our model as a funtion of a ontrol variablex and bi is a potential bias.If we evaluate the joint probability density f(~yj~�) with the data atuallyobtained and regard it as a funtion of ~�, then this is the likelihood funtionL(~yj~�). The probability for the parameters ~� given the data ~y is obtainedusing Bayes' theorem asp(~�j~y) = L(~yj~�)�(~�)R L(~yj~�)�(~�) d~� / L(~yj~�)�(~�) : (1)Here �(~�) is the prior probability for ~�, whih reets our degree of beliefabout the parameter values before onsideration of the data ~y.Often experimental data ~y = (y1; : : : ; yn) are reported together with ann�n ovariane matrix Vstat, whih reets their statistial errors, and alsowith a separate matrix Vsys for the systemati unertainties. In a frequentistleast-squares �t one would estimate the parameters ~� from the minimum of�2(~�) = (~y� ~�(~�))TV �1(~y� ~�(~�)). For the ovariane matrix V , one oulduse only Vstat but in order to inlude the systemati errors one an alsotake the sum V = Vstat + Vsys. The minimum of �2(~�) gives the parameterestimates and the `�2min + 1' rule gives their errors (ovarianes).
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3The following Bayesian analysis will give essentially the same result asa least-squares �t with V = Vstat + Vsys. We an takeL(~yj~�;~b) / exp h� 12 (~y � ~�(~�)�~b)TV �1stat(~y � ~�(~�)�~b)i ; (2)�b(~b) / exp h� 12~bTV �1sys~bi ; ��(~�) = onst. ; (3)p(~�;~bj~y) / L(~yj~�;~b)��(~�)�b(~b) ; (4)where in (4), Bayes' theorem is used to obtain the joint probability for theparameters of interest, ~�, and also the biases ~b. To obtain the probabilityfor ~� we integrate (marginalize) over ~b,p(~�j~y) = Z p(~�;~bj~y) d~b : (5)The mode of p(~�j~y) will be at the same position as the least-squares esti-mates, and its ovariane will be the same as obtained from the �2min + 1rule. Similar approahes have been investigated by 1;2.3. The error on the errorIf one stays with the prior probabilities used above, the Bayesian and least-squares approahes deliver the same result. The advantage of the Bayesianframework is that it allows one to re�ne the assessment of the systematiunertainties as expressed through the prior probabilities.For example, the least-squares �t inluding systemati errors is equiva-lent to the assumption of a Gaussian prior for the biases. A more realistiprior would take into aount the experimenters own unertainty in assign-ing the systemati error, i.e., the `error on the error'. Suppose, for example,that the ith measurement is haraterized by a reported systemati uner-tainty �sysi and an unreported fator si, suh that the prior for the bias biis �b(bi) = Z 1p2��sysi exp ��12 b2i(si�sysi )2 ��s(si) dsi : (6)Here the `error on the error' is enapsulated in the prior for the fator s,�s(s). For this we an take whatever funtion is deemed appropriate. Forsome types of systemati error it ould be lose to the ideal ase of a delta
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4funtion entred about unity. Many reported systematis are, however,at best rough guesses, and one ould easily imagine a funtion �s(s) witha mean of unity but a standard deviation of, say, 0:5 or more. We havestudied using a Gamma distribution for �s(s), whih results in substantiallylonger tails for the prior �b(b) than those of the Gaussian. Related studiesusing an inverse Gamma distribution an be found in 3;4.Using a prior for the biases with tails longer than those of a Gaussian re-sults in a redued sensitivity to outliers, whih arise when an experimenteroverlooks an important soure of systemati unertainty in the estimatederror of a measurement. Furthermore the width of the posterior distribu-tion, whih e�etively tells one the unertainty on the parameter of interest,beomes oupled to the internal onsisteny of the data used. In ontrast,high value of �2min does not lead to small values of the errors obtained fromthe �2min + 1 rule.The method an be generalized to over a wide variety of model un-ertainties by inluding prior probabilities for an enlarged set of modelparameters. These additional parameters ould represent, for example, thelimited exibility of the parameterization of PDFs at lowQ2, missing higherorder terms in the perturbative parts of the predition, et.4. ConlusionsIn the Bayesian statistial approah one enapsulates systemati unertain-ties in prior probabilities for an enlarged set of model parameters. By usingomputational tools suh as Markov Chain Monte Carlo, one an obtain thepredited unertainties for quantities of interest. An e�ort is underway toapply this approah to observables for the LHC.AknowledgementsMany thanks to my ollaborator Clare Quarman and to the onfereneorganizers for an extremely interesting and fruitful meeting.Referenes1. S.I. Alekhin, Eur. Phys. J. C10 (1999) 395.2. W. Giele, S. Keller and D. Kosower, Parton Distribution Funtion Unertain-ties, hep-ph/0104052.3. G. D'Agostini, Septial ombination of experimental results; General onsid-erations and appliation to "0=", hep-ex/9910036.4. V. Dose and W. von der Linden, Outlier tolerant parameter estimation, inXVIII Workshop on Maximum Entropy and Bayesian Methods, Kluwer, 1999.


