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The uncertainties in predictions for LHC observables are often dominated by sys-
tematic effects that are difficult to quantify in the traditional frequentist statistical
framework. Uncertainties related to parton densities are an important example.
Difficulties with the frequentist approach to this problem are examined and the
Bayesian alternative is explored.

1. Introduction

To predict a cross section that can be measured at a hadron collider such
as the LHC, one computes the convolution of a parton level cross section
with parton density functions (PDFs). Uncertainties can thus stem from
the limited order of the perturbatively computed parton-level cross section
and also from the imperfect modelling of non-perturbative physics through
the PDFs. Furthermore the parameters entering into the prediction are
determined by fits to data that themselves have imperfectly understood
systematics and which are not in all cases mutually consistent.

Most previous analyses of PDFs have been done using frequentist sta-
tistical methods. In this framework one does not speak of the probability
of a parameter; these rather are treated as constants whose values must
be estimated. The PDF parameters are often determined by least-squares
fits using data from deep-inelastic scattering and other processes. One con-
structs a global x? whose minimum, y2 . , determines the fitted parameter
values. The rule from frequentist statistics to obtain the standard devi-
ations of the fitted parameters is to vary the parameters until one finds
X2 = x2;, + 1. This recipe, however, often results in unrealistically small
errors in predicted cross sections.

The apparent failure of the “x2. + 1’ rule takes place because, in ad-
dition to the statistical errors, one can have model uncertainties and sys-



June 30, 2006 20:50 Proceedings Trim Size: 9in x 6in sf-cowan

tematics that are not fully taken into account. In order to report realistic
estimates for uncertainties, several groups producing PDF fits have cho-
sen to allow the x? to increase from its minimum by substantially greater
amounts, such as 50 or 100. This results in reasonable error estimates
but it is an ad hoc recipe obtained by extension of a frequentist statistical
method to a problem for which it was not designed. The Bayesian statis-
tical approach offers a more transparent means to incorporate systematic
uncertainties into predicted cross sections.

2. The Bayesian approach

In Bayesian statistics, a probability can be associated not only with data
but also with a hypothesis, e.g,. a hypothesized parameter value. In this
case the probability is interpreted as a degree of belief about where the
parameter’s true value lies.

Suppose the experiments we consider provide us with a set of data .
The probability to obtain these data will be given by a joint probability
density function f (g]‘]é), where 6 is a set of parameters. In general we can
write for the expectation value of the ith measurement E[y;] = u(z;;0)+b;.
Here u(z; 5) is the prediction of our model as a function of a control variable
z and b; is a potential bias.

If we evaluate the joint probability density f(%] |§) with the data actually
obtained and regard it as a function of é: then this is the likelihood function
L(§|§) The probability for the parameters g given the data ¥ is obtained

using Bayes’ theorem as

p@li) = 29970 1 i) 1)

Here 7(f) is the prior probability for §, which reflects our degree of belief
about the parameter values before consideration of the data .

Often experimental data § = (y1,...,yy) are reported together with an
n X n covariance matrix Vgiag, which reflects their statistical errors, and also
with a separate matrix Vs, for the systematic uncertainties. In a frequentist
least-squares fit one would estimate the parameters g from the minimum of
Y2(6) = (7 — i(9))TV=1(7 - [i(6)). For the covariance matrix V', one could
use only Vst but in order to include the systematic errors one can also
take the sum V' = Viat + Viys. The minimum of x? (5) gives the parameter
estimates and the ‘x2. + 1’ rule gives their errors (covariances).



June 30, 2006 20:50 Proceedings Trim Size: 9in x 6in sf-cowan

The following Bayesian analysis will give essentially the same result as
a least-squares fit with V' = Vit + Viys. We can take

L(6.8) x exp |37 - i0) - DVeh G- @@ - D] . (@)
() o exp [—%?VS;SII;] , 79(6) = const. (3)
p(0,813) o< L(§16,b)mo (B)ms(B) , (4)

where in (4), Bayes’ theorem is used to obtain the joint probability for the
parameters of interest, 6, and also the biases b. To obtain the probability
for 6 we integrate (marginalize) over b,

—

p(0)7) = / p(8, b7 db . (5)

The mode of p(é]g]‘) will be at the same position as the least-squares esti-
mates, and its covariance will be the same as obtained from the x2, +1
rule. Similar approaches have been investigated by 2.

3. The error on the error

If one stays with the prior probabilities used above, the Bayesian and least-
squares approaches deliver the same result. The advantage of the Bayesian
framework is that it allows one to refine the assessment of the systematic
uncertainties as expressed through the prior probabilities.

For example, the least-squares fit including systematic errors is equiva-
lent to the assumption of a Gaussian prior for the biases. A more realistic
prior would take into account the experimenters own uncertainty in assign-
ing the systematic error, i.e., the ‘error on the error’. Suppose, for example,
that the ith measurement is characterized by a reported systematic uncer-
tainty 07" and an unreported factor s;, such that the prior for the bias b;
is

2

) = [ s e |~ s | e o (6)

2
Here the ‘error on the error’ is encapsulated in the prior for the factor s,
7s(s). For this we can take whatever function is deemed appropriate. For
some types of systematic error it could be close to the ideal case of a delta
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function centred about unity. Many reported systematics are, however,
at best rough guesses, and one could easily imagine a function m4(s) with
a mean of unity but a standard deviation of, say, 0.5 or more. We have
studied using a Gamma distribution for 7s(s), which results in substantially
longer tails for the prior 7, (b) than those of the Gaussian. Related studies
using an inverse Gamma distribution can be found in 4.

Using a prior for the biases with tails longer than those of a Gaussian re-
sults in a reduced sensitivity to outliers, which arise when an experimenter
overlooks an important source of systematic uncertainty in the estimated
error of a measurement. Furthermore the width of the posterior distribu-
tion, which effectively tells one the uncertainty on the parameter of interest,
becomes coupled to the internal consistency of the data used. In contrast,
high value of x2; does not lead to small values of the errors obtained from
the x2,, + 1 rule.

The method can be generalized to cover a wide variety of model un-
certainties by including prior probabilities for an enlarged set of model
parameters. These additional parameters could represent, for example, the
limited flexibility of the parameterization of PDFs at low @2, missing higher
order terms in the perturbative parts of the prediction, etc.

4. Conclusions

In the Bayesian statistical approach one encapsulates systematic uncertain-
ties in prior probabilities for an enlarged set of model parameters. By using
computational tools such as Markov Chain Monte Carlo, one can obtain the
predicted uncertainties for quantities of interest. An effort is underway to
apply this approach to observables for the LHC.
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