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BAYESIAN STATISTICAL METHODS FOR PARTONANALYSESGLEN COWANPhysi
s Department, Royal Holloway, University of London,Egham, Surrey TW20 0EX, UK,E-mail: g.
owan�rhul.a
.ukThe un
ertainties in predi
tions for LHC observables are often dominated by sys-temati
 e�e
ts that are diÆ
ult to quantify in the traditional frequentist statisti
alframework. Un
ertainties related to parton densities are an important example.DiÆ
ulties with the frequentist approa
h to this problem are examined and theBayesian alternative is explored.1. Introdu
tionTo predi
t a 
ross se
tion that 
an be measured at a hadron 
ollider su
has the LHC, one 
omputes the 
onvolution of a parton level 
ross se
tionwith parton density fun
tions (PDFs). Un
ertainties 
an thus stem fromthe limited order of the perturbatively 
omputed parton-level 
ross se
tionand also from the imperfe
t modelling of non-perturbative physi
s throughthe PDFs. Furthermore the parameters entering into the predi
tion aredetermined by �ts to data that themselves have imperfe
tly understoodsystemati
s and whi
h are not in all 
ases mutually 
onsistent.Most previous analyses of PDFs have been done using frequentist sta-tisti
al methods. In this framework one does not speak of the probabilityof a parameter; these rather are treated as 
onstants whose values mustbe estimated. The PDF parameters are often determined by least-squares�ts using data from deep-inelasti
 s
attering and other pro
esses. One 
on-stru
ts a global �2 whose minimum, �2min, determines the �tted parametervalues. The rule from frequentist statisti
s to obtain the standard devi-ations of the �tted parameters is to vary the parameters until one �nds�2 = �2min + 1. This re
ipe, however, often results in unrealisti
ally smallerrors in predi
ted 
ross se
tions.The apparent failure of the `�2min + 1' rule takes pla
e be
ause, in ad-dition to the statisti
al errors, one 
an have model un
ertainties and sys-1
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2temati
s that are not fully taken into a

ount. In order to report realisti
estimates for un
ertainties, several groups produ
ing PDF �ts have 
ho-sen to allow the �2 to in
rease from its minimum by substantially greateramounts, su
h as 50 or 100. This results in reasonable error estimatesbut it is an ad ho
 re
ipe obtained by extension of a frequentist statisti
almethod to a problem for whi
h it was not designed. The Bayesian statis-ti
al approa
h o�ers a more transparent means to in
orporate systemati
un
ertainties into predi
ted 
ross se
tions.2. The Bayesian approa
hIn Bayesian statisti
s, a probability 
an be asso
iated not only with databut also with a hypothesis, e.g,. a hypothesized parameter value. In this
ase the probability is interpreted as a degree of belief about where theparameter's true value lies.Suppose the experiments we 
onsider provide us with a set of data ~y.The probability to obtain these data will be given by a joint probabilitydensity fun
tion f(~yj~�), where ~� is a set of parameters. In general we 
anwrite for the expe
tation value of the ith measurement E[yi℄ = �(xi; �)+bi.Here �(x; ~�) is the predi
tion of our model as a fun
tion of a 
ontrol variablex and bi is a potential bias.If we evaluate the joint probability density f(~yj~�) with the data a
tuallyobtained and regard it as a fun
tion of ~�, then this is the likelihood fun
tionL(~yj~�). The probability for the parameters ~� given the data ~y is obtainedusing Bayes' theorem asp(~�j~y) = L(~yj~�)�(~�)R L(~yj~�)�(~�) d~� / L(~yj~�)�(~�) : (1)Here �(~�) is the prior probability for ~�, whi
h re
e
ts our degree of beliefabout the parameter values before 
onsideration of the data ~y.Often experimental data ~y = (y1; : : : ; yn) are reported together with ann�n 
ovarian
e matrix Vstat, whi
h re
e
ts their statisti
al errors, and alsowith a separate matrix Vsys for the systemati
 un
ertainties. In a frequentistleast-squares �t one would estimate the parameters ~� from the minimum of�2(~�) = (~y� ~�(~�))TV �1(~y� ~�(~�)). For the 
ovarian
e matrix V , one 
oulduse only Vstat but in order to in
lude the systemati
 errors one 
an alsotake the sum V = Vstat + Vsys. The minimum of �2(~�) gives the parameterestimates and the `�2min + 1' rule gives their errors (
ovarian
es).
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3The following Bayesian analysis will give essentially the same result asa least-squares �t with V = Vstat + Vsys. We 
an takeL(~yj~�;~b) / exp h� 12 (~y � ~�(~�)�~b)TV �1stat(~y � ~�(~�)�~b)i ; (2)�b(~b) / exp h� 12~bTV �1sys~bi ; ��(~�) = 
onst. ; (3)p(~�;~bj~y) / L(~yj~�;~b)��(~�)�b(~b) ; (4)where in (4), Bayes' theorem is used to obtain the joint probability for theparameters of interest, ~�, and also the biases ~b. To obtain the probabilityfor ~� we integrate (marginalize) over ~b,p(~�j~y) = Z p(~�;~bj~y) d~b : (5)The mode of p(~�j~y) will be at the same position as the least-squares esti-mates, and its 
ovarian
e will be the same as obtained from the �2min + 1rule. Similar approa
hes have been investigated by 1;2.3. The error on the errorIf one stays with the prior probabilities used above, the Bayesian and least-squares approa
hes deliver the same result. The advantage of the Bayesianframework is that it allows one to re�ne the assessment of the systemati
un
ertainties as expressed through the prior probabilities.For example, the least-squares �t in
luding systemati
 errors is equiva-lent to the assumption of a Gaussian prior for the biases. A more realisti
prior would take into a

ount the experimenters own un
ertainty in assign-ing the systemati
 error, i.e., the `error on the error'. Suppose, for example,that the ith measurement is 
hara
terized by a reported systemati
 un
er-tainty �sysi and an unreported fa
tor si, su
h that the prior for the bias biis �b(bi) = Z 1p2��sysi exp ��12 b2i(si�sysi )2 ��s(si) dsi : (6)Here the `error on the error' is en
apsulated in the prior for the fa
tor s,�s(s). For this we 
an take whatever fun
tion is deemed appropriate. Forsome types of systemati
 error it 
ould be 
lose to the ideal 
ase of a delta
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4fun
tion 
entred about unity. Many reported systemati
s are, however,at best rough guesses, and one 
ould easily imagine a fun
tion �s(s) witha mean of unity but a standard deviation of, say, 0:5 or more. We havestudied using a Gamma distribution for �s(s), whi
h results in substantiallylonger tails for the prior �b(b) than those of the Gaussian. Related studiesusing an inverse Gamma distribution 
an be found in 3;4.Using a prior for the biases with tails longer than those of a Gaussian re-sults in a redu
ed sensitivity to outliers, whi
h arise when an experimenteroverlooks an important sour
e of systemati
 un
ertainty in the estimatederror of a measurement. Furthermore the width of the posterior distribu-tion, whi
h e�e
tively tells one the un
ertainty on the parameter of interest,be
omes 
oupled to the internal 
onsisten
y of the data used. In 
ontrast,high value of �2min does not lead to small values of the errors obtained fromthe �2min + 1 rule.The method 
an be generalized to 
over a wide variety of model un-
ertainties by in
luding prior probabilities for an enlarged set of modelparameters. These additional parameters 
ould represent, for example, thelimited 
exibility of the parameterization of PDFs at lowQ2, missing higherorder terms in the perturbative parts of the predi
tion, et
.4. Con
lusionsIn the Bayesian statisti
al approa
h one en
apsulates systemati
 un
ertain-ties in prior probabilities for an enlarged set of model parameters. By using
omputational tools su
h as Markov Chain Monte Carlo, one 
an obtain thepredi
ted un
ertainties for quantities of interest. An e�ort is underway toapply this approa
h to observables for the LHC.A
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