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Outline

Multivariate methods in particle physics
Some general considerations
Brief review of statistical formalism
Multivariate classifiers:
Linear discriminant function
Neural networks
Naive Bayes classifier
Kernel-based methods
k-Nearest-Neighbour
Decision trees
Support Vector Machines
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Resources on multivariate methods
Books:

C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning, Springer, 2001

R. Duda, P. Hart, D. Stork, Pattern Classification, 2™ ed., Wiley, 2001

A. Webb, Statistical Pattern Recognition, 2™ ed., Wiley, 2002

Materials from some recent meetings:

PHYSTAT conference series (2002, 2003, 2005, 2007,...) see

www. physt at. org

Caltech workshop on multivariate analysis, 11 February, 2008
| ndi co. cern. ch/ conferenceD spl ay. py?conf | d=27385

SLAC Lectures on Machine Learning by Ilya Narsky (2006)

WWW\ gr oup. sl ac. st anford. edu/ sl uo/ Lectures/ Stat 2006_Lect ures. htni

Glen Cowan Multivariate Statistical Methods in Particle Physics 3



Software

TIWA, Hocker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039

From t nva. sour cef or ge. net , also distributed with ROOT
Variety of classifiers
Good manual

St at Pat t er nRecogni ti on, I. Narsky, physics/0507143

Further info from ww. hep. cal t ech. edu/ ~nar sky/ spr. ht nl
Also wide variety of methods, many complementary to TMVA
Currently appears project no longer to be supported
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Data analysis at the LHC

The LHC experiments are expensive
~ $10" (accelerator and experiments)

the competition 1s intense
(ATLAS vs. CMS) vs. Tevatron

and the stakes are high:

4 sigma effect ~—

s sigma effect

So there 1s a strong motivation to extract all possible information
from the data.
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Detectors at 4 pp collision points:
ATLAS &

Glen Cowan

The Large Hadron Collider

Counter-rotating proton beams
in 27 km circumference ring

pp centre-of-mass energy 14 TeV

CMS 4 general purpose

LHCb (b physics)
ALICE (heavy ion physics)
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The ATLAS detector

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

2100 physicists
37 countries
167 universities/labs

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

25 m diameter
46 m length

7000 tonnes
~10°® electronic channels
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A simulated SUSY event in ATLAS

high p_jets

of hadrons

missing transverse energy
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Background events

ATLAS Atlantis Event: myFilesZ 8.4.0 3026 795902

This event from Standard
Model ttbar production also
has high p_jets and muons,

and some missing transverse

energy.

— can easily mimic a
SUSY event.
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Statement of the problem

-

Suppose for each event we measure a set of numbers X=(x,,...,x,)
X = jet JZ
X, = missing energy

x, = particle 1.d. measure, ...

X follows some n-dimensional joint probability density, which

~

depends on the type of event produced, 1.e., was it pp—tt, pp—gg,...

p(X|H,) DN

x4 IR . ,; £ / E.g. hypotheses (class labels) H , H ,
.-z ‘-"-.. .,:* . Often simply “signal”, “background”
,:3-3}4. ‘1“ We want to separate (classify) the
4 .. o event types in a way that exploits the
p(%|H,) X, information carried in many variables.
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Finding an optimal decision boundary

Maybe select events with “cuts”:

X <C,
i i

X <C,
J J

Goal of multivariate analysis 1s to do this in an “optimal” way.
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General considerations

In all multivariate analyses we must consider e.g.

Choice of variables to use

Functional form of decision boundary (type of classifier)
Computational issues

Trade-off between sensitivity and complexity

Trade-off between statistical and systematic uncertainty

Our choices can depend on goals of the analysis, e.g.,

Event selection for further study
Searches for new event types
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Probability — quick review

Frequentist (A = outcome of | Hutcome is A
q ( Pl'\fl) — HIE]%{ ourcoe 1s

repeatable observation): n
Subjective (A = hypothesis): P(A) = degree of belief that A is true
Conditional probability: P(A|B) = P(ﬁ(;f)

P(B|A)P(A)  P(B|A)P(A)
P(B) = P(B|4)P(A)

Bayes' theorem: P(A|B) =
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Test statistics

The decision boundary 1s a surface in the n-dimensional space of
input variables, e.g., y(X)=const.

We can treat the y(x) as a scalar test statistic or discriminating
function, and try to define this function so that its distribution has the

maximum possible separation between the event types:

2 T T T
The decision boundary Y cut
is now effectively a single 5 | ety w rejectHy
cut on y(x), dividing A
: 1. [ & -
X-space into two 7 |
: . f()/| O> A |I E'x / f<y|H1>
regions: os | 2\ / y »
R (accept H) | ‘
, (accept H, L \:F{___ U
R (reject H ) 0 : 2 3 4 5
y{x)
14
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Classification viewed as a statistical test

Probability to reject H if 1t 1s true (type I error): & Zf £ y|H o) dy
Rl

o = significance level, size of test, false discovery rate

Probability to accept H_if H 1s true (type Il error): S :I f(y|H,)dy
R

0

1 — B = power of test with respect to H 1

Equivalently if e.g. H = background, H, = signal, use etficiencies:

Es:ff(J’|H1)dy:1_B:POW6r Eb:ff<J/|Ho>dy:1_0‘

1
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Purity / misclassification rate

Consider the probability that an event assigned to a certain category
1s classified correctly (i.e., the purity).

Use Bayes' theorem:

Here R 1is signal region _ prior probability
o # B P(x € Ry|s)P(s)
Pl )= P(x € Ri|s)P(s)+ P(x € R{|b)P(b)
posterior probability

N.B. purity depends on the prior probabilities for an event to be
signal or background (~s, b cross sections).
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ROC curve

We can characterize the quality of a classification procedure
with the receiver operating characteristic (ROC curve)

1.0

o Dbetter
o good
background rejection
= 1 — background eff.
0.0 >
0.0 1.0

signal efficiency
Independent of prior probabilities.
Area under ROC curve can be used as a measure of quality (but usually
interested 1n a specific or narrow range of efficiencies).
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Constructing a test statistic

The Neyman-Pearson lemma states: to obtain the highest background
rejection for a given signal efficiency (highest power for a given
significance level), choose the acceptance region for signal such that

where c 1s a constant that determines the signal efficiency.

Equivalently, the optimal discriminating function is given by the

likelihood ratio: y (35): P(}|S)
p(X[b)

N.B. any monotonic function of this 1s just as good.
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Bayes optimal analysis

From Bayes' theorem we can compute the posterior odds:

p(s|x) _ p(Zls) p(s)
p(b]x) p(X|b) p(b)

N T

posterior odds likelihood  prior odds

ratio

which 1s proportional to the likelihood ratio.

So placing a cut on the likelihood ratio 1s equivalent to ensuring
a minimum posterior odds ratio for the selected sample.
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Purity vs. efficiency trade-off

The actual choice of signal efficiency (and thus purity) will depend
on goal of analysis, e.g.,

Trigger selection (high efficiency)
Event sample used for precision measurement (high purity)
Measurement of signal cross section: maximize s/vs+b

Discovery of signal: maximize expected significance ~ s/+/b
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Neyman-Pearson doesn't always help

The problem 1s that we usually don't have explicit formulae for the pdfs
p(xls), p(xIb), so for a given x we can't evaluate the likelithood ratio.

Instead we may have Monte Carlo models for signal and background
processes, so we can produce simulated data:

“training data”
generate X~ p(X|s) > Ko Xy / events of known type

generate x~p(X/b) = X, ..., Xy

b

Naive try: enter each (s,b) event into an n-dimensional histogram,

use e.g. M bins for each of the n dimensions, total of M" cells.

n 1s potentially large — prohibitively large number of cells to populate,
can't generate enough training data.
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Strategies for event classification

A compromise solution 1s to make an Ansatz for the form of the
test statistic y(x) with fewer parameters; determine them (using
MC) to give best discrimination between signal and background.

Alternatively, try to estimate the probability densities p(xls), p(xIb)

and use the estimated pdfs to compute the likelihood ratio at the
desired x values (for real data).

Glen Cowan Multivariate Statistical Methods in Particle Physics 22



[_inear test statistic

-

n -
- T
Ansatz:  y(X)=D w,x,=w' ¥
i=1

Choose the parameters w, ..., w, so that the pdfs f(yl|s), f(y|b)

have maximum ‘separation’. We want:

T
AN z.
large distance between '
mean values, small widths
2, — 2
2
N T.—T
- Fisher: maximize J (w)=< > bz
2+
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Coetficients for maximum separation

mean, covariance of x

We have (uk)i=fxip(?c|Hk)d3'c « P
(Vk)ij:f(X_Uk)i<x_lf‘k)jp(7c|Hk)d}

where k=0,1 (hypothesis)

and i,j=1,...,n (component of x)

For the mean and variance of y(X) we find
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Determining the coefficients w

The numerator of J(w) 1s

_Tl Z wiWw; Hy); (Uo_ﬂl)j

i,j=1

_— ‘between’ classes

and the denominator 1s ‘within’ classes

So+3i= D ww (Vy+V,),=w Wib
i, j=1

T — .
w" Bw _ separation between classes

- maximize J(w)=—=
T - < . .
w! wi,  separation within classes
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Fisher discriminant function

Setting 8—J =0 gives Fisher’s linear discriminant function:
w.

l

y(X)=w'x withwoc W (d,— i)

Gives linear decision boundary.

Projection of points in direction of decision
boundary gives maximum separation.
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Comment on least squares

We obtain equivalent separation between the classes 1f we multiply the

w; by a common scale factor and add an offset w:

n
:W0+Z W, X;
i=1

Thus we can fix the mean values 7, and 7, for the two classes to arbitrary

values, e.g., 0 and 1.
Then maximizing J(W)=(t,—T,)’/(Z;+23) means minimizing

Maximizing Fisher’s

Zg""Z?:Eo[(J’_TO)z]"‘El[(y_Tl)z]

S

Estimate expectation values with
averages of training (e.g. MC) data: E, |(y—T,) 2 |—

J(w) = ‘least squares’

RIL I
Nkl=1

27
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Fisher discriminant for Gaussian data

Suppose f(x|H) 1s a multivariate Gaussian with mean values
E,|x|=p,for H, E |x|=p, for H,

and covariance matrices VO = VI = V for both. We can write the

Fisher's discriminant function (with an offset) 1s
- - - —1 >
y<x):W0+(“o_U1) Vo x
The likelihood ratio is thus

iglgo; =exp|—— (X)) V '+ (Z—), V' (3—4,)]
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Fisher for Gaussian data (2)

That 1s, y(x) 1s a monotonic function of the likelithood ratio, so for
this case the Fisher discriminant 1s equivalent to using the likelihood
ratio, and 1s therefore optimal.

For non-Gaussian data this no longer holds, but linear
discriminant function may be simplest practical solution.

Often try to transform data so as to better approximate
Gaussian before constructing Fisher discrimimant.
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Fisher and Gaussian data (3)

Multivariate Gaussian data with equal covariance matrices also
gives a simple expression for posterior probabilities, e.g.,

p(ﬂHo)P(Ho)
(X|H ) P(H,)+p(X|H,)P(H,)

P(H()l}):
P

For Gaussian x and a particular choice of the offset w, this becomes:

- 1 _ . ; |
P(H[H)=——m=sr@) 50, |
which 1s the logistic sigmoid function: ik |
(We will use this later in connection e

CI 1 1 1 1
with Neural Networks.) 4 2 0 2 4
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Transtormation of inputs

If the data are not Gaussian with equal covariance, a linear decision
boundary 1s not optimal. But we can try to subject the data to a

transformation R R
P(%),..., ®,(X)

and then treat the ¢ as the new input variables. This 1s often called
“feature space” and the ¢ are “basis tfunctions”. The basis
functions can be fixed or can contain adjustable parameters which

we optimize with training data (cf. neural networks).

In other cases we will see that the basis functions only enter as

dot products
(P(xi)'(P(xj):K<xi’ xj)

and thus we will only need the “kernel function” K(xi, xj)
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Lecture 1 Summary

The optimal solution to our classification problem should be to use
the likelihood ratio as the test variable — unfortunately not possible.

So far we have seen a simple linear ansatz for the test statistic, which
1s optimal only for Gaussian data (with equal covariance).

If the data are not Gaussian, we can transform to “feature space”

=i

P(X),.... ®,(X)

Next time we will consider this to obtain nonlinear test statistics such
as neural networks.
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