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[Linear decision boundaries

A linear decision boundary 1s only
optimal when both classes follow
multivariate Gaussians with equal
covariances and different means.

For some other cases a linear
boundary 1s almost useless.
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Nonlinear transformation of inputs

We can try to find a transformation, x ,..., xn—>(p1(5€), o cpm(})
so that the transformed “feature space” variables can be separated

better by a linear boundary:
Here, guess fixed

-
(p,=tan (xz/ xl) _— basis functions

(no free parameters)
_ ]2, 2
P,=NX T X,
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Neural networks

Neural networks originate from attempts to model neural processes
(McCulloch and Pitts, 1943; Rosenblatt, 1962).

Widely used in many fields, and for many years the only “advanced”
multivariate method popular in HEP.

We can view a neural network as a specific way of parametrizing
the basis functions used to define the feature space transformation.

The training data are then used to adjust the parameters so that the
resulting discriminant function has the best performance.
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The single layer perceptron

Define the discriminant using y(X)=h w,+ Z WX
i=1

where £ 1s a nonlinear, monotonic activation function; we can use
e.g. the logistic sigmoid 4 (x)=(1+¢ ).

X
If the activation function 1s monotonic,
the resulting y(x) 1s equivalent to the
original linear discriminant. This 1s an O y(X)
example of a “generalized linear model”
called the single layer perceptron. T
X

1

: output node

input layer
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The multilayer perceptron

Now use this 1dea to define not only the output y(x), but also the set of
transformed inputs @ (X),..., @ (X) that form a “hidden layer”:

Superscript for weights indicates X
layer number

j=1
i Xn
=y .(2) 2) (= A .
y(X)=h{w —I—Z W (pj(x) inputs hidden  output
=1 layer ¢

This 1s the multilayer perceptron, our basic neural network model;
straightforward to generalize to multiple hidden layers.
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Network architecture: one hidden layer

Theorem: An MLP with a single hidden layer having a sufficiently
large number of nodes can approximate arbitrarily well the Bayes
optimal decision boundary.

Holds for any continuous non-polynomial activation function
Leshno, Lin, Pinkus and Schocken (1993), Neural Networks 6, 861—867

In practice often choose a single hidden layer and try increasing the
the number of nodes until no further improvement in performance

1s found.
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More than one hidden layer

“Relatively little 1s known concerning the advantages and disadvantages
of using a single hidden layer with many units (neurons) over many
hidden layers with fewer units. The mathematics and approximation
theory of the MLP model with more than one hidden layer 1s not well
understood.”

“Nonetheless there seems to be reason to conjecture that the two hidden
layer model may be significantly more promising than the single hidden
layer model, ...”

A. Pinkus, Approximation theory of the MLP model in neural networks,
Acta Numerica (1999), pp. 143—195.
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Network training

The type of each training event is known, 1.e., for event a we have:

-

xa=(x1 RERY xn) the input variables, and

r =0,1 a numerical label for event type (“target value™)

Let w denote the set of all of the weights of the network. We can
determine their optimal values by minimizing a sum-of-squares
“error function”

D 1y(%, W)=t =2 E (w
a=1 a=1 ‘\

Contribution to error function

=L
2

from each event
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Numerical minimization of E(w)

Consider gradient descent method: from an initial guess in weight
space w'" take a small step in the direction of maximum decrease.
I.e. for the step T to T+1,

W=V E ()

learning rate (m>0)

If we do this with the full error function E(w), gradient descent does
surprisingly poorly; better to use “conjugate gradients™.

But gradient descent turns out to be useful with an online (sequential)
method, i.e., where we update w for each training event a, (cycle through

all training events):
Wl T — (T nV Ea(w(T))
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Error backpropagation

Error backpropagation (“backprop”) 1s an algorithm for finding the
derivatives required for gradient descent minimization.

The network output can be written y(x) = h(u(x)) where

(1)
Z W X
k=0

where we defined ¢ =x = 1 and wrote the sums over the nodes

WB=2 wle (3), @ (@)=

in the preceding layers starting from O to include the offsets.

OF

So e.g. for event a we have =(y —t )h'(u(X))p (X)

(2) J
O W \ o
derivative of
Chain rule gives all the needed derivatives. activation function

12
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Overtraining

It the network has too many nodes, after training it will tend to conform
too closely to the training data:

Overtraining

The classification error rate on the
training sample may be very low, but
it would be much higher on an

independent data sample.

Therefore it 1s important to evaluate the error rate with a statistically
independent validation sample.
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Monitoring overtraining

If we monitor the value of the error function E(w) at every cycle of

the minimization, for the training sample it will continue to decrease.

error But the validation sample it may
initially decrease, and then at
some point increase, indicating
overtraining.

validation sample

]

training sample

training cycle

Glen Cowan Multivariate Statistical Methods in Particle Physics

14



Validation and testing

The validation sample can be used to make various choices about the
network architecture, e.g., adjust the number of hidden nodes so

as to obtain good “generalization performance” (ability to correctly
classify unseen data).

If the validation stage 1s iterated may times, the estimated error rate
based on the validation sample has a bias, so strictly speaking one

should finally estimate the error rate with an independent test sample.

Rule of thumb if data not  train : validate : test
too expensive (Narsky): 50 : 25 25

But this depends on the type of classifier. Often the bias in the error

rate from the validation sample is small and one can omit the test step.
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Bias — variance trade-off

For a finite amount of training data, an increasing number of network
parameters (layers, nodes) means that the estimates of these parameters
have increasingly large statistical errors (variance, overtraining).

Having too few parameters doesn't allow the network to exploit the
existing nonlinearities, 1.e., it has a bias.

high variance | high bias | good trade-off
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Regularized neural networks

Often one uses the test sample to optimize the number of hidden nodes.

Alternatively one may use a relatively large number of hidden nodes
but include in the error function a regularization term that penalizes

overfitting, e.g.,
regularization parameter

/

E(w):E(w)Jr%wTw

Increasing A gives a smoother boundary (higher bias, lower variance)

Known as “weight decay”, since the weights are driven to zero unless
supported by the data (an example of “parameter shrinkage”).
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Neural network example from LEP II
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Probability Density Estimation (PDE)

Construct non-parametric estimators for the pdfs of the data x for the

two event classes, p(xIHO), p(xIHl) and use these to construct the

likelihood ratio, which we use for the discriminant function:

p(X|H,)
p(x|H )

n-dimensional histogram is a brute force example of this; we will
see a number of ways that are much better.

Glen Cowan Multivariate Statistical Methods in Particle Physics 19



Correlation vs. independence

In a general a multivariate distribution p(x) does not factorize into a
product of the marginal distributions for the individual variables:

L n P holds only if the
P(x)—H P,-(xi) components of x
i=1

are independent

Most importantly, the components of x will generally have nonzero
covariances (1.e. they are correlated):

V..Zcov[xl.,xj]:E[xix.]—E[x.]E[x.];éO

) J ! J
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Decorrelation of input variables

But we can define a set of uncorrelated input variables by a
linear transformation, i.e., find the matrix A such that for y=A X
the covariances covly,, yi] =0:

o 6 . . . . o 6 . . . .
a | : a | :
2 = - 2 il
4 | (@) * ®) ]
6 ' ' ' ' § ' ' ' '
6 4 2 0 2 4 6 6 4 2 0 2 4 &
x Y1

For the following suppose that the variables are “decorrelated” in
this way for each of p(xIH ) and p(x|H ) separately (since in general

their correlations are different).
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Decorrelation 1s not enough

But even with zero correlation, a multivariate pdf p(x) will in general
have nonlinearities and thus the decorrelated variables are still not
independent.

pdf with zero covariance but

2 - components still not
o - independent, since clearly

p(x,,x)

.,
;e £
it L

p,(x))

and therefore

1 plx, x,)#p (x,)p,(x,)
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Naive Bayes

But if the nonlinearities are not too great, it 1s reasonable to first
decorrelate the inputs and take as our estimator for each pdf

p)=TT5,(x)

So this at least reduces the problem to one of finding estimates of
one-dimensional pdfs.

The resulting estimated likelithood ratio gives the Naive Bayes classifier
(in HEP sometimes called the “likelihood method™).
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Test example with TMVA

| TMVA Input Variable: x

Normalised
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Test example, x vs. y with cuts on z
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Fisher
discriminant

Naive Bayes,
no decorrelation
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Test example results
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Test example ROC curves

Background rejection versus Signal efficiency
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Efficiencies versus cut value

Select signal by cutting on output: y > Y out

Fisher discriminant
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Efficiencies versus cut value

Select signal by cutting on output: y > Y out

effpurS_MLP
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Efficiencies versus cut value

Select signal by cutting on output: y > Y out

effpurS_NaiveBayes
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Efficiencies versus cut value

Select signal by cutting on output: y > Y out
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Lecture 2 summary

We have generalized the classifiers to allow nonlinear decision
boundaries.

In neural networks, the user chooses a certain number of hidden
layers and nodes; having more allows for an increasingly accurate
approximation to the optimal decision boundary.

But having more parameters means that their estimates given a finite
amount of training data are increasingly subject to statistical
fluctuations, which shows up as overtraining.

The “naive Bayes” method seeks to approximate the joint pdfs of
the classes as the product of 1-dimensional marginal pdfs (after
decorrelation). To pursue this further we should therefore refine our
approximations of 1-d pdfs.
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