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Multivariate methods in particle physics
Some general considerations
Brief review of statistical formalism
Multivariate classifiers:
Linear discriminant function
Neural networks
Naive Bayes classifier
k-Nearest-Neighbour method

Decision trees
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Support Vector Machines
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Probability density estimation methods

It we could estimate the pdfs p(xIHO), p(xIH]) for the classes of events

we want to separate, then we could form the optimal discriminating
function from their ratio:

P<}|Ho)
p(}|H1)

y(%)=
So the problem reduces to estimating the joint pdfs p(x). We may
choose different methods for numerator and denominator.
Methods for estimating pdfs can be
parametric, 1.e., we have a function p(x;0,,...,0,)

non-parametric, 1.e., model independent (e.g. histogram, ...);
also contain parameters but they are “local”; not rigidly tied
to any model.
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Beyond Naive Bayes

Recall that in the naive Bayes approach we approximated the
n-dimensional joint pdf as the product of the marginal densities:

p<7c>~1ﬁ pi(x)

So the problem is reduced to estimating the one-dimensional marginal
pdts p (x), usually straightforward.

But this does not capture the higher order nonlinearities of p(x).
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[_ancaster models

Lancaster models approximate an n-dimensional joint pdt p(x) = p(x ,....x )

n

in terms of the marginal distributions for up to a certain number s of

the n components.

For s = 1 this was Naive Bayes:. For e.g. s =2 we approximate p(x) in

terms of one- and two-dimensional marginal densities pi(xi) and pij(xi,xj) as

n
2

< Z pij('xi’xj)
i, j,i<j pi(xi)pj(xj>

ﬁ pi(x;)

)

This will not capture the full nonlinear structure of p(x) but goes

further in that direction than assuming independence. (cf. Webb Ch. 3)
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Parametric density estimation

If we have a parametric function for one or both of the densities,

P(X:6):...,0,)

then we can estimate the parameters using the training data with e.g.
the method of maximum likelihood, 1.e., choose the parameter

estimates 91 Y 9m to be the values that maximize the likelihood function:

N
=11 p(%.,0,,....0,)
i=1

\ Product over all training events

Finally simply take o
(assumes events statistically

A A
A

p(x)=p(x.0,,....0,) independent, not strictly true if
Function evaluation generally fast, we have multiple candidate
storage requirements low. “events” per collision event).
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Parametric density estimation (2)

The number of parameters in a reasonable model 1s usually much smaller
than the corresponding number of degrees of freedom 1n nonparametric
methods, so a parametric estimate of the pdf will have higher statistical
accuracy for a given amount of training data. Trade off:

few parameters: model not flexible and may not describe data,
but parameters accurately determined.

many parameters: model flexible enough to describe the true pdf,
but parameter estimates have large statistical errors.

Even if a full parametric model 1s not available, p(x) may (approximately)

factorize into a parametric part for a subset of the variables:

p(x;,...x)=plx;,....x.;0,,...,0 Jg(x,,,,...,x,)

sO we can mix parametric and non-parametric methods.
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Histograms

Start by considering one-dimensional case, goal 1s to estimate pdf p(x)

of continuous r.v. x.

Simplest non-parametric estimate of p(x) 1s a histogram:

A N total entries

A . n;
p(x)_NAxl. for x in bin i

Bishop Section 2.5
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Histograms (2)

Small bin width: estimate 1s very
spiky, structure not really part of
underlying distribution.

Medium bin width: best

Large bin width: too smooth and
thus fails to capture e.g. bimodal

character of parent distribution B
Bishop Section 2.5
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Histograms (3)

Advantages: once histogram computed, the data can be discarded.

Disadvantage: discontinuities at bin edges, scaling with dimensionality.

In general we can do much better than histograms, but they still
show important features common to many methods:

To estimate pdf at x, = (xl, s xD) we should count the number of
events in some local neighbourhood near x (requires definition of

“local”, 1.e., a distance measure, e.g., Euclidian).

The bin width Ax plays the role of a smoothing parameter defining
the size of the local neighbourhood. If it 1s too large, local structure
1s washed out; too small, and the estimate 1s subject to statistical
fluctuations.
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The curse of dimensionality

The difficulty 1n determining the density in a high-dimensional histogram
1s an example of the “curse of dimensionality” (Bellman, 1961).

332‘
332‘
| | | | =
N T 1
>
=1 4 B " /’ &1
] g
$1.
D=2 E3 B

The number of cells in a D-dimensional histogram grows exponentially.
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Counting events 1n a local volume

Consider a small volume V centred about x = (xl, ey X ).
This 1s 1n contrast to the histogram where the bin edges were fixed.

Suppose from N total events we find Kin V.

K

Take as estimate for p(x) p(x)= N

Two approaches:

Fix V and determine K from the data

Fix K and determine V from the data
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Kernels

E.g. take V to be hypercube centered at the x where we want p(x).

Define k(u)=1for|u,|<1/2 and O otherwise,i=1, ..., D
1.e., the function 1s nonzero inside a unit hypercube centred

about x and zero outside.

k(u) 1s an example of a kernel function (here called a Parzen window).
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Kernel density estimators

x where we x of ith

want estimate training event

X—X,
7 side of hypercube

where we used V = h” for the volume of the hypercube.

N
Estimate p(x) using: p(x)= Nlh - >k
i=1

Thus the estimate at x 1s the obtained from the sum of N hypercubes,

one centred about each of the data points x..

This 1s an example of a kernel density estimator (KDE or Parzen estimator).
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Gaussian KDE

The Parzen window KDE has discontinuities at the edges of the
hypercubes; we can avoid these with a smoother kernel function
e.g., Gaussian:

—||x=%|]
2k

That 1s, to estimate p(x):

Place a Gaussian of standard deviation & centred about each
training data point;

At a given x, add up the contribution from all the Gaussians and
divide by N.
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Gaussian KDE, choice of i

The Gaussian KDE shows the same
basic 1ssues as did the histogram: 5
50
0
0
5
0 0.5 1

Bishop Section 2.5
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KDE — general

We can choose any kernel function k(u) as long as it satisfies
k(u)=0,

fk(u)duzl

Advantage of KDE: essentially no training!

To get p(x) simply compute the required sum of terms.

Disadvantages: A single function evaluation of p(x) requires

carrying out the sum over all events, and the entire data set must be stored.
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Expectation value of p(X)

To see role of kernel, compute expectation value of p(X)

X 1 < X—X, 1 X—X,
E = Elk =—F|k
_ 1 x—x' ’ l
_ﬁfk - p(x')dx

Expectation value of the estimator p(x) 1s the convolution of
the true density p(x) with the kernel function.

For h — 0 the kernel becomes a delta function, and E| p(x)|
approaches the true density (zero bias). But for finite N the
variance V| p(x)| becomes infinite.
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Choice of /4 using mean squared error

Suppose we knew the true p(x) (or had a reference standard). We
can compute the Mean Squared Error (MSE) of our estimator:

MSE[p(x)|=E[(p(x)—p(x))’]

=[E[p(x)—p(x)]+E|(p(x)-p(x))

f \

bias squared variance

We could e.g. choose & so that it minimizes the integral of the MSE

over x (or maybe 1n some region of interest):

J MSE[p(x)]d x

1/5
If both the kernel and p(x) are a Gaussian, this gives 7 =(§) oN~'"
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Adaptive KDE

In the simplest form of KDE the smoothing parameter 4 1s a constant.

In regions high density (lots of events) we want small /4 so as to not
wash out structure.

In regions of low density, small 4 would lead to statistical fluctuations
in the estimate (structure not present in parent distribution).

So we may want to allow the size of the local neighbourhood over
which we average to vary depending on the local density.

In sample point adaptive KDE the bandwidth becomes a function of p(x):
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KDE boundary 1ssues

Some components of x may have finite limits. But if we use e.g. a
Gaussian kernel, then some of the probability “spills out” of the
allowed range.

The probability inside the range is therefore underestimated.

One solution 1s to renormalize the kernel so that its integral inside
the allowed range 1s equal to unity.

Another option is to “mirror” the distribution about the boundary.
The events from outside spilling in compensate those spilling out.
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K-nearest neighbour method

Instead of fixing V, consider a fixed number of events K
and find the appropriate V such that it just contains K events.

. : : . . K
The density estimate 1s then simply p (x)ZW
. 5 K
K plays role of smoothing parameter.
Large K means lower statistical error 0=
in the estimate of the density, TK=>5

e.g., K=100 gives 10% accuracy.

But large K means you need a bigger

volume, estimate is less local.

Bishop Section 2.5

Estimate of p(x) 1s not a true pdf — integral over entire space diverges.
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K-nearest neighbour method

Example from TMV A manual — here the algorithm 1s used directly
as a classifier. The event type is assigned based on majority
vote within the volume.
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Figure 11: Example for the k-nearest neighbour algorithm in a three-dimensional space (i.e., for three
discriminating input variables). The three plots are projections upon the two-dimensional coordinate planes.
The full (open) circles are the signal (background) events. The k-INN algorithm searches for 20 nearest
points in the nearest neighborhood (circle) of the query event, shown as a star. The nearest neighborhood
counts 13 signal and 7 background points so that query event may be classified as a signal candidate.
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Feature normalization

K-NN algorithms rely on a metric in the input variable space
to define the volume.

If there 1s a great difference in the ranges spanned by some of the
variables, then they are implicitly given different weights.

Typically scale the input variables so as to give approximately
equal distances between relevant features. Try e.g.

X—X .

. . . . [}

Linear scaling in unit range: x = — (0<x
X — X

max min

Standardization: X =

(zero mean, unit variance)
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Curse of dimensionality for K-NN

Suppose out data are uniformly distributed in a D-dimensional unit cube.

We want a “small” volume to capture a fraction » = K/N of the events.

Make a hypercube local neighbourhood with side e, volume e”

. . D
Its volume fractionis r=e

The side of an edge of the small volume is €=7 "o

For e.g. =0.001 and D = 30 the side of the “neighborhood” is 0.8, almost

the entire range of the input.

(ct. Hastie, Tibshirani and Friedman p 23.)
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Lecture 3 summary

Many important classification methods rely on obtaining estimates of
the multivariate probability densities. We can use e.g.

Histograms
Kernel density estimation (parzen window)
K-nearest neighbour

Both KDE and K-NN methods require the entire data set to be
retained, and all become problematic in higher dimensions.

But if the pdfs are not too nonlinear, the density estimation can be done
in lower dimension (Naive Bayes, Lancaster models).
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