
Appendix C

The Maxwell-Boltzmann distribution

In this section we will derive the probability density function (pdf) that describes the distribution
of speeds of the molecules in a gas of a certain temperature, the famous Maxwell-Boltzmann
distribution. Suppose we look at a molecule with mass m in a gas at temperature T and consider
first only the x-component of its velocity, vx. The value of vx taken on by a given molecule at
a given time will be the end result of a tremendous number of collisions, each of which changes
its vx by some random value. According to the Central Limit Theorem, a random variable that
is the sum of a very large number of terms will follow a Gaussian distribution. The conditions
for this to hold are fairly unrestrictive and satisfied to a high degree of accuracy in our problem,
so the pdf for vx is well modeled as a Gaussian. If we work in the centre-of-momentum frame
of the gas (i.e., there is no wind), then the mean value 〈vx〉 is zero, so the pdf of vx is

fx(vx) =
1√
2πσ

e−v2
x/2σ2

. (C.1)

By symmetry, the pdfs for the y and z components should have exactly the same form, i.e., we
assume that there is no preferred direction. The parameter σ in (C.1) characterizes the width
of the Gaussian pdf and we will show below that it is in fact equal to the standard deviation of
the distribution. We do this by finding the mean value of v2

x,

〈v2
x〉 =

∫

∞

−∞

v2
xfx(vx) dvx =

∫

∞

−∞

v2
x√

2πσ
e−v2

x/2σ2

dvx = σ2 . (C.2)

Thus the variance of the distribution, defined as 〈v2
x〉 − 〈vx〉2 is equal to σ2. The standard

deviation, defined as the square root of the variance, is therefore equal to σ.

The speed v of a molecule is

v =
√

v2
x + v2

y + v2
z (C.3)

and by symmetry we have

〈v2
x〉 = 〈v2

y〉 = 〈v2
z〉 , (C.4)
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and so therefore the mean value of v2 is

〈v2〉 = 3〈v2
x〉 = 3σ2 . (C.5)

Now the Equipartition Theorem tells us that each quadratic term in the expression for the
energy of a molecule contributes on average kT/2, where k is Boltzmann’s constant and T is
the temperature. Therefore we have

1

2
m

(

〈v2
x〉 + 〈v2

y〉 + 〈v2
z〉

)

= 3σ2 =
3

2
kT (C.6)

or

σ =

√

kT

m
. (C.7)

It is reasonable to assume that the components of the velocity are statistically independent,
i.e., a molecule’s value of vx has no influence on the probability to find a certain value for vy,
etc. If this is true, then the joint distribution for all three components of the velocity is simply
the product of the individual pdfs. Using equation (C.1), this is found to be

f(vx, vy, vz) = fx(vx)fy(vy)fz(vz) =
1

(2π)3/2σ3
e−(v2

x+v2
y+v2

z )/2σ2

=
1

(2π)3/2σ3
e−v2/2σ2

. (C.8)

Using this we can find the probability to have the speed in an interval between v and v + dv
by integrating the joint probability density (C.8) over the infinitessimal volume in velocity space
(i.e., axes vx, vy and vz) where the speed is in the range [v, v + dv]. This volume is simply
a spherical shell at “radius” v and with thickness dv. Furthermore, since the joint pdf (C.8)
f(vx, vy, vz) in fact only depends on v, its integral over the shell is found by evaluating the
integrand f(vx, vy, vz) at the speed v and multiplying by the volume of integration, which is the
area of a sphere of radius v times the thickness of the shell dv:

f(v) dv =
1

(2π)3/2σ3
e−v2/2σ2

4πv2dv =

√

2

π

v2

σ3
e−v2/2σ2

dv , (C.9)

where as before σ =
√

kT/m refers to the standard deviation of the velocity components.
Equation (C.9) is the Maxwell-Boltzmann distribution. Its mode (most probable value) is at a
speed vmode =

√

2kT/m, its mean is at 〈v〉 =
√

8kT/πm, and its rms value is vrms =
√

3kT/m.


