
PH3010 MSci Skills Project

X-ray simulation with the Monte Carlo method

1 Introduction

In this project you will investigate the production of x-rays and their interactions with matter
using the Monte Carlo method. This is a technique for simulating processes using sequences
of random numbers. The first part of the problem is to simulate the production of individual
photons, each having a different energy. The energies are chosen ‘at random’ in such a way that
the values follow a given distribution.

We then allow each photon to hit a layer of matter (in the example below, 1 mm beryllium).
There is a certain probability for the photon to be absorbed, and this probability depends on
the photon’s energy. So for each photon we ‘toss a coin’ (in the computer, of course) to decide
whether the photon makes it through. We can then make a histogram of the energies of the
photons which penetrate the layer.

2 The assignment

Your assignment is to simulate the production of x-ray photons from a synchrotron radiation
source and to simulate their passage through a layer of matter. The tasks include the following:

• simulate random numbers uniformly distributed between 0 and 1;

• use the uniformly distributed numbers to simulate photon energies using the acceptance–
rejection technique;

• simulate the absorption of photons in matter;

• make a histogram of the energies of the photons which are not absorbed.

3 Generating random numbers

Simulation of random processes by the Monte Carlo method can be broken down into two basic
steps. First, random numbers are generated which follow a uniform distribution between 0 and
1. Next, these are used to generate random numbers which correspond to physical quantities
(such as photon energies), which in general have a different frequency distribution.

There are many computer algorithms available for producing uniformly distributed random
numbers. They produce a sequence of numbers according to a certain rule, and would produce
the same sequence if you repeat the procedure. In this sense they are not truly random, and
therefore are often called pseudorandom. For our purposes this is just as good.

A simple but effective algorithm is the multiplicative linear congruential generator (MLCG).
This generates a sequence of integer values n1, n2, . . . according to the rule



ni+1 = (ani)mod m. (1)

Here the multiplier a and modulus m are integer constants and the mod (modulo) operator means
that you take the remainder of ani divided by m. The values ni follow a periodic sequence in
the range [1,m − 1]. The initial value n0 is called the seed. The transformation

ri = ni/m (2)

then gives numbers in the interval (0, 1).

The art of random number generation is to choose a and m so that the resulting values r
perform well in various tests of randomness. For a 32-bit integer representation, for example,
m = 2147483399 and a = 40692 have been shown to give good results.1 You may wish to try
implementing your own random number generator. If time constraints prevent this you can use
the Math.random method from directly from java, e.g.,

double x = Math.random(); // assigns random value to x

4 X-ray photons from synchrotron radiation

When a charged particle such as an electron traverses a magnetic field, it emits electromagnetic
radiation (photons) tangential to its direction of motion. The energy spectrum of these photons
has a certain derivable form which depends on the electron’s energy and the strength of the
magnetic field. This is difficult to calculate, but fortunately we don’t have to; spectra can be
obtained from the Center for X-ray Optics at the Lawrence Berkeley National Laboratory at
http://www-cxro.lbl.gov/. Follow the links to ‘x-ray interactions with matter’, and then
‘synchrotron bend magnet radiation’. You can choose various parameters for the electron beam
to produce energy spectra such as the one shown in Fig. 1. The data can be downloaded into a
file for use in your project.

Figure 1: A photon energy spec-
trum from a synchrotron radiation
source.

Once you have obtained a spectrum like Fig. 1, the next step is to generate photon energies
such that the probability to obtain a given energy is proportional to the height of the curve.
The easiest way to do this is with the acceptance–rejection technique.

1P.L. L’Ecuyer, Efficient and portable combined random number generators, Commun. ACM 31 (1988) 742.
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• First generate two independent random numbers, r1 and r2, both uniformly distributed
between 0 and 1.

• Use r1 and r2 to produce two more numbers: E = r1Emax and f = r2fmax, where Emax is
the maximum photon energy and fmax is at least as high as the maximum of the energy
spectrum. For Fig. 1, for example, use Emax = 1.5 × 104 and fmax = 1.8 × 1013. The two
numbers E and f will be represented by a point somewhere on the energy spectrum plot.

• If the point (E, f) is below the curve, accept E as the generated photon energy, otherwise,
reject the value and repeat the procedure until a value is accepted.

The probability to accept the point is proportional to the height of the curve, so the accepted
energies will have the desired distribution.

5 Interaction of x-rays with matter

We will imagine that the x-rays hit a layer of material of a given thickness x. We would like
to know how many of the photons make it out the other side and what their energies are. The
probability for a photon to be absorbed by the photoelectric effect before penetrating a distance
x can be expressed as

P (γ of energy E absorbed before x) = 1 − e−x/λ(E) (3)

where λ(E) is the attenuation length, which is in general a complicated function of the photon’s
energy. Attenuation lengths measured as a function of energy can be downloaded from the
Center for X-ray Optics for a variety of materials; an example for beryllium is shown in Fig. 2.
(Follow the links ‘x-ray interactions with matter’, ‘attenuation length’.)

Figure 2: Attenuation length for x-
rays in beryllium as a function of
energy.

The strategy is thus to start by generating a photon with a certain energy. For this energy,
determine the attenuation length λ(E) and from (3) the probability P for the photon to be
absorbed before making it through a given thickness of material, e.g. x = 1 mm beryllium.
Then generate another random number r between 0 and 1. If r < P , we say that the photon
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is absorbed, if not, it makes it through. (In fact, a real photon may make it through but its
energy can be degraded by Compton scattering. For now we will ignore this effect.)

You will then have a subset of the photons which make it through the layer of material,
and you should make a histogram of their energies. Generate enough events so that the energy
spectrum of the photons getting through is reasonably well determined.

Should time permit, try varying the parameters of the problem such as the thickness of the
material layer, its composition, the nature of the photon source, etc. You could, for example,
determine the mean photon energy as a function of the thickness of a given absorber.

6 Software implementation

This section gives some advice on how to implement the calculation described above in a java
program. At different stages it is necessary to read in numbers columns of numbers from a file
that you get from the website www-cxro.lbl.gov. The numbers can be thought of as x and
y values, i.e., you read in pairs of numbers (xi, yi) for i = 1, . . . , n. Using these one needs an
approximation for the function y(x) for arbitrary x, that is, even at values of x that do not
coincide with any of the xi that were initially read in.

This task arises, for example, when obtaining the spectrum f(E) of the photon energies by
using the numbers (fi, Ei) read in from a file. And one has essentially the same problem when
obtaining the attenuation length λ(E). So to carry out this task, it is useful to create a java
class that can read in a file containing two columns of numbers, say, x and y, and the class
should contain a method that returns the function y(x), which can be based on an interpolation
between the (xi, yi) points from the file. The basic idea is illustrated in Fig. 3.

Figure 3: Illustration of the
interpolation between points to
approximate the function y(x).

The suggested method for dealing with this problem is to create a class called, say,
FunctionFromTable, since its purpose is to take as input a table of numbers, i.e., the points
(xi, yi), i = 1, . . . , n and to provide a function y(x), that could be evaluated with any value of
x. For example, one could define the class FunctionFromTable, starting in the following way:
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public class FunctionFromTable {

// data members

int numPoints;

double[] x;

double[] y;

double yScale;

// constructor

public FunctionFromTable(String file) {

final int MAXPOINTS = 1000;

x = new double[MAXPOINTS];

y = new double[MAXPOINTS];

this.readData(file); // sets x[], y[], numPoints

yScale = 1;

}

The data members are an integer valued variable numPoints that will store the number of
(x, y) points that are read in, and the values themselves are stored in the arrays x and y. In
addition we have defined a scale factor yScale which will allow us to scale the function by a
constant; for now ignore this.

The class’s constructor, which in java always has the same name as the class itself, takes in
a single argument of type String, which is the name of the input file. In the program that uses
this class, we create an object of type FunctionFromTable with, e.g.,

FunctionFromTable f = new FunctionFromTable("myFile.txt");

The code for the constructor for this function is a somewhat complicated, and involves using
java’s BufferedReader class to parse the numbers that it reads in from the file. This code will
be provided to you.

The class must also define a function that can return our approximation to y(x), e.g.,

public double val(double xVal){

// Returns the function value. Outside allowed range of x set function

// to zero, otherwise interpolate between points.

double fVal = -9999.;

// YOUR CODE TO CALCULATE FUNCTION VALUE GOES HERE:

return fVal;

}
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Part of your task is to implement the interpolation illustrated in Fig. 3 in the code above.
Partial code for the FunctionFromTable class can be found on the project web page listed below.

To test the FunctionFromTable class you should write a short test program that, say, creates
a FunctionFromTable object using one of the data files from www-cxro.lbl.gov, and tests that
the values returned for selected input values of the argument agree with what you expect.

Once this class has been completed, it can be used twice in the main program that you will
write to simulate x-ray energies: first, to obtain the energy spectrum f(E), and second to obtain
the attenuation length versus energy λ(E). That is, your program will contain lines of the form

FunctionFromTable eSpec = new FunctionFromTable("energySpectrum.txt");

FunctionFromTable lambda = new FunctionFromTable("attenLength.txt");

and then to use these functions for a given value of the argument you will write, say,

double E = ... // assign value of E

double f = eSpec.val(E); // returns energy spectrum value f(E)

In fact, it is convenient to scale the energy spectrum numbers by a constant so that their
values are close to unity. There is an additional constructor supplied in the file mentioned above
that allows for this.

To make histograms of the energies that you generate with the Monte Carlo method, you
can use the Histogram class that you used in the PH2150 course last year. There is an extended
version of this class on the project web page listed below that provides methods to obtain the
contents of a histogram along with the bin boundaries. These can be written to a to a text file
and then plotted using, e.g., Excel.

7 References

This script and links to other resources can be found on the project web page:
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