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Estimating error bars from the variation

of measured values about a fitted line

Often in data analysis one is presented with a set of measurements of a quantity y
corresponding to different values of a control variable z, as shown in Fig. 1. Suppose the z
values are known with negligible error but that the y values have some point-to-point variation.
These variations reflect the random uncertainty in the y values and this is what we want to
estimate from the data using the method of least squares. More information on the statistical
formalism can be found in, for example, [1] and [2].

0 1 1 1 1 Figure 1: Measured values y
at different values of the control
variable z.

Often we can model the overall trend of the data as a polynomial such as a straight line,
which we will use here as an example. That is, in the absence of measurement errors we would

find y = f(x;a) where

f(z;a) =ao+ a1z . (1)

Here a = (ag,a1) is our vector of parameters describing the line.
Suppose we have data points (z;,y;) with i = 1,...,n. To estimate the parameters a using

the method of least squares, we should minimize the quantity

n n

xX’(@) = (vi— f(zs2)> =) (v — a0 —a1mi)” . (2)
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We therefore have to set the derivatives of x? with respect to ag and a1 equal to zero, i.e.,
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Equations (3) and (4) can be written as

n n
naO‘l‘z-Tial = Zyi, (5)

n n n
Z Z;ap + Z zia; = Z YiTi - (6)
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These are two linear equations for the two unknowns ag and a;. They are of the form
Aag+Ba; = C, (7)
Dag+ Eay = F, (8)

where the definitions of A, B, etc., follow directly from comparison of (5) and (6) with (7) and
(8). (Notice that in our example B = D.) The solutions are easily found to be
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R AF — DC

“ = AE_BD" (10)

The solutions have been written with hats to emphasize that these are estimators for the true
and in general unknown values ag and a;.

If we had known the appropriate error bars (standard deviations) o; from the beginning,
then we would have constructed the weighted chi-squared as

2 - (y, —ap — a1$i)2
Xw = Z o2 . (11)

i=1 i
Furthermore, if the hypothesis of a linear dependence is correct, then the expected value of the
minimized x?2 is equal to the number of degrees of freedom of the fit, ngor, which is the number
of data points minus the number of fitted parameters. In our case we have ngor = n — 2. If
we assume that the standard deviations are equal for all y values, i.e., o; = ¢ for all 7, then we
expect
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where x?(4) is the unweighted x? from equation (2) evaluated with the estimates ag and a;. So
we can now estimate the standard deviation ¢ using

o=

- 1/2
2 n
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p— l” — ;:1:(% ao — G12;) , (13)

where ag and @1 are obtained from equations (9) and (10). This represents the standard deviation
needed to give a chi-square per degree of freedom of unity under the assumption of a linear
relation for f(z) and a common o for all y;.

Alternatively one might want to assume that all measured points have the same relative level
of variation about their true values. That is, we could take the standard deviation o; to be

0; = flz;a)e = ye . (14)

where € represents the ‘relative error’ for each point. Requiring that chi-squared be equal to the
number of degrees of freedom then means

(yi — Go — a17;)?

n
=n-2. (15)
=1 yi282
The estimator for ¢ is therefore
R R 1/2
1 & (yi — g — arz;)?
2 — ; 16
¢ n—2 2:21 yz-2 (16)

It may not always be clear whether the assumption of constant ¢ or constant ¢ is valid. This
must be determined from the data and from considerations of the origin of the random variation
in the measured values.
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