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The Statistical Data Analysis Module 
This module on Statistical Data Analysis contains two parts: 

  Curve fitting with the method of least squares (weeks 1, 2) 
  Introduction to Machine Learning (week 3) 

You will be given a number of exercises that should be written up 
in the form of a mini-project report.  The standard rules apply: 

  Use the LaTeX template from the PH3010 moodle page. 
  Word limit is 3000, not including appendices. 
  All code should be submitted as an appendix. 

The exercises for the least-squares part of the module are at the 
end of the script on moodle.  Core exercises are numbers 1, 2, 3. 
There may be some adjustment of the assigned exercises 
depending on how fast we are able to get through the material. 
(Exercise 4 may become optional.) 
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Outline (part 1) 
Today: 

Basic ideas of fitting a curve to data 

The method of least squares 

Finding the fitted parameters 

Find the statistical errors of the fitted parameters 

Using error propagation 

Start of exercises 

----------------------------- 

Next week:   

goodness-of-fit, fitting correlated data, more exercises 
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Curve fitting: the basic problem 
Suppose we have a set of N measured values yi, i = 1,.., N. 

Each yi has an “error bar” σi, and is measured at a value xi of  
a control variable x known with negligible uncertainty: 

Roughly speaking, the goal is to find a curve that passes “close to” 
the data points, called “curve fitting”. 
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Measured values → random variables 
We will regard the measured yi  
as independent observations  
of random variables (r.v.s). 

Idea of an r.v.:  imagine making  
repeated observations of the same 
yi , and put these in a histogram: 

The distribution of yi  has a mean µi and standard deviation σi. 

We only know the data values yi from a single measurement, i.e., 
we do not know the µi (goal is to estimate this). 

   yi = measured value 
   xi = control variable value 
   µi = “true value” (unknown) 
   σi = error bar ← suppose these are known 
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Fitting a curve 
The standard deviation σi reflects the reproducibility (statistical 
error) of the measurement yi. 

If σi were to be very small, we can imagine that yi would we be  
very close to its mean µi, and lie on a smooth curve given by some  
function of the control variable, i.e., µi = f (xi).     

Goal is to find the function f (x).    Here we will assume that 
we have some hypothesis for its functional form, but that it  
contains some unknown constants (parameters), e.g., a straight line: 

vector of parameters 

Curve fitting is thus reduced to estimating the parameters. 
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Least Squares:  main idea 
Consider fitting a straight line ad suppose we pick an arbitrary  
point in parameter space (θ0, θ1), which gives a certain curve: 

Here the curve does not describe the data very well, as can be  
seen by the large values for the residuals: 

residual of ith point  =  
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Minimising the residuals 
If a measured value yi has a small σi, we want it to be 
closer to the curve, i.e., measure the distance from point to 
curve in units of σi: 

normalized residual of ith point  =  

Idea of the method of Least Squares is to choose the parameters 
that give the minimum of the sum of squared normalized residuals, 
i.e., we should minimize the “chi-squared”: 



PH3010 Least Squares Fitting / Week 1 9	G. Cowan / RHUL Physics 

Least squares estimators 
The values that minimize χ2(θ) are called the least-squares  
estimators for the parameters, written with hats: 

The fitted curve is thus “best” in the least-squares sense: 
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Comments on LS estimators 
We can derive the method of Least Squares from a more 
general principle called the method of Maximum Likelihood 
applied to the special case where the yi are independent 
and Gaussian distributed: 

, 

It is equally valid to take the minimum of χ2(θ) as the definition 
of the least-squares estimators, and in fact there is no general 
rule for finding estimators for parameters that are optimal in 
every relevant sense. 
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Next steps 
1. How do we find the estimators, i.e., how do we minimize χ2(θ)? 

2. How do we quantify the statistical uncertainty in the estimated 
parameters that stems from the random fluctuations in the 
measurements, and how is this information used in an analysis 
problem, e.g., using error propagation? 

3. How do we assess whether the hypothesized functional form  
f (x; θ) adequately describes the data? 
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Finding estimators in closed form 
For a limited class of problem it is possible to find the estimators  
in closed form.  An important example is when the function f (x; θ)  
is linear in the parameters θ , e.g., a polynomial of order M (note 
the function does not have to be linear in x): 

As an example consider a straight line (two parameters): 

We need to minimize: 
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Finding estimators in closed form (2) 

Set the derivatives of χ2(θ) with respect to the parameters equal 
to zero: 
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Finding estimators in closed form (3) 

The equations can be rewritten in matrix form as 

which has the general form 

Read off a, b, c, d, 
e, f, by comparing 
with eq. above. 
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Finding estimators in closed form (4) 
Recall how to invert a 2×2 matrix: 

Apply A-1 to both sides of previous eq. to find solution (written 
with hats, because these are the estimators): 
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Comments on solution when f (x;θ) is 
linear in the parameters 

Finding solution requires solving a system of linear equations; 
can be done with standard matrix methods. 

Estimators are linear functions of the yi.  This is true in general  
for problems of this type with an arbitrary number of parameters. 

Even though we could find the solution in closed form, the 
formulas get a bit complicated. 

If the fit function f (x; θ) is not linear in the parameters, it is not  
always possible to solve for the estimators in closed form. 

So for many problems we need to find the solution numerically. 
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Finding LS estimators numerically 
Start at a given point in the parameter space and move around  
according to some strategy to find the point where χ2(θ) is a  
minimum.   

For example, alternate 
minimizing with respect 
to each component of θ: 

Siegmund Brandt, Data Analysis: Statistical and Computational 
Methods for Scientists and Engineers 4th ed., Springer 2014 

starting point 
minimum 

θi 

θj 

Many strategies possible, 
e.g., steepest descent, 
conjugate gradients, ... 
(see Brandt Ch. 10). 
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Fitting the parameters with Python 
The routine routine curve_fit from scipy.optimize can  
find LS estimators numerically.   To use it you need: 

We need to define the fit function f (x; θ), e.g., a straight line: 
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The data values (xi, yi, σi) need to be in the form of NumPy 
arrays, e.g, 

Start values of the parameters can be specified:  

To find the parameter values that minimize χ2(θ), call curve_fit: 

Returns estimators and covariance matrix as NumPy arrays. 

Need absolute_sigma=True for the fit errors (cov. matrix) to have 
desired interpretation. 

Fitting the parameters with Python (2) 
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Statistical errors of fitted parameters 
The estimators have statistical errors that are due to the random 
nature of the measured data (the yi). 

If we were to obtain a new independent set of measured values,  
y1,..., yN, then these would in general give different values for the  
estimated parameters. 

We can simulate the data set 
y1,..., yN many times with the  
Monte Carlo method. 

For each set evaluate the 
estimators for θ0 and θ1 from  
the straight-line fit and enter  
into a scatter plot: 
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Statistical errors of fitted parameters (2) 
Project points onto the θ0 and θ1 axes: 

Each distribution’s standard deviation (~width) is used as a 
measure of the corresponding estimator’s statistical error. 

^ ^ 
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(Co)variance, correlation 
The scatter plot of θ0 versus θ1 showed that if one estimate 
came out high, the other tended to be low and vice versa. 
This indicates that the estimators are (negatively) correlated. 

To quantify the degree of correlation in any two random  
variables u and v we define the covariance,  

^ ^ 

The covariance of a variable u with itself is its variance V[u] = σu
2 

The square root of the variance = standard deviation σu. 

Also define dimensionless correlation  
coefficient (can show -1 ≤ ρ ≤ 1): 
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Covariance etc. from straight-line fit 
From the simulated values shown in the scatter plot, use  
standard formulae (see RHUL Physics formula book) to obtain 
the standard deviations and covariance: 
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Covariance matrix 
If we have a set of estimators 

we can find the covariance for each pair and put into a matrix 

The vector of estimators and their covariance matrix are the 
two objects returned by the routine curve_fit: 

Covariance matrix is square and symmetric. 

Diagonal elements are the variances: 
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Covariance from derivatives of χ2(θ) 
It is also possible to obtain the covariance matrix from second 
derivatives of χ2(θ) with respect to the parameters at its minimum.   

First find U-1, 

and then invert to find the covariance matrix U. 

This is what curve_fit does (derivatives computed numerically). 
Example with straight-line fit gives: 
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Using the covariance matrix: 
error propagation 

Suppose we’ve done a fit for parameters (θ1,..., θm) and 
obtained estimators and their covariance matrix. 

We may then be interested in a given function of the fitted 
parameters, e.g.,  

What is the standard deviation of the quantity u?  That is, how 
do we propagate the statistical errors in the estimated parameters 
through to u? 

Or suppose we have two functions u and v.  What is are their 
standard deviations and what is their covariance cov[u,v]? 
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The error propagation formulae 
By expanding the functions to first order about the parameter 
estimates, one can show that the covariance is approximately 

and thus the variance for a single function is 

In the special case where the  
covariance matrix is diagonal, 
Uij = σi σj δij, we can carry out  
one of the sums to find 
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Comments on error propagation 
In general the estimators from a fit are correlated, so their full 
covariance matrix must be used for error propagation. 

The approximation of error propagation is that the functions are 
linear in a region of plus-or-minus one standard deviation about 
the estimators. 

Simple example: 
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Exercise 1:  polynomial fit 
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Polynomial fit:  error band 
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Polynomial fit:  error propagation 
Consider the difference between the fitted curve values at x = a  
and x = b: 

Use error propagation to find the standard deviation of Δab  
(see script). 
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Ball and ramp  
data from Galileo 

Galileo Galilei, Manuscript f.116,  
Biblioteca Nazionale Centrale di Firenze, 
bncf.firenze.sbn.it 

In 1608 Galileo carried out 
experiments rolling a ball 
down an inclined ramp to 
investigate the trajectory of  
falling objects. 

PH3010 Least Squares Fitting / Week 1 
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Ball and ramp data from Galileo 

Units in punti  
(approx. 1 mm) 

Suppose h is set with negligible uncertainty, and 
d is measured with an uncertainty σ = 15 punti. 
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Analysis of ball and ramp data 
What is the correct law that relates d and h? 

Try different hypotheses: 

For now, fit the parameters α and β, find their standard deviations 
and covariance. 

Next week we will discuss how to test whether a given  
hypothesized function is in good or bad agreement with the data. 
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Extra slides 
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History 
Least Squares fitting also called “regression”  

F. Galton, Regression towards mediocrity in hereditary  
stature, The Journal of the Anthropological Institute of Great  
Britain and Ireland. 15: 246–263 (1886). 
 
Developed earlier by Laplace and Gauss: 

C.F. Gauss, Theoria Motus Corporum Coelestium in Sectionibus 
Conicis Solem Ambentium, Hamburgi Sumtibus Frid. Perthes et  
H. Besser Liber II, Sectio II (1809); 
C.F. Gauss, Theoria Combinationis Observationum Erroribus 
Minimis Obnoxiae, pars prior (15.2.1821) et pars posterior 
(2.2.1823), Commentationes Societatis Regiae Scientiarium 
Gottingensis Recectiores Vol. V (MDCCCXXIII). 


