
4. Computer Generated Random Numbers:

The Monte Carlo Method

4.1 Random Numbers

Up to now in this book we have considered the observation of random
variables, but not prescriptions for producing them. It is in many applications
useful, however, to have a sequence of values of a randomly distributed vari-
able x. Since operations must often be carried out with a large number of such
random numbers, it is particularly convenient to have them directly available
on a computer. The correct procedure to create such random numbers would
be to use a statistical process, e.g., the measurement of the time between two
decays from a radioactive source, and to transfer the measured results into the
computer. In practical applications, however, the random numbers are almost
always calculated directly by the computer. Since this works in a strictly
deterministic way, the resulting values are not really random, but rather can
be exactly predicted. They are therefore called pseudorandom.

Computations with random numbers currently make up a large part of
all computer calculations in the planning and evaluation of experiments. The
statistical behavior which stems either from the nature of the experiment or
from the presence of measurement errors can be simulated on the computer.
The use of random numbers in computer programs is often called the Monte

Carlo method.
We begin this chapter with a discussion of the representation of numbers

in a computer (Sect. 4.2), which is indispensable for an understanding of what
follows. The best studied method for the creation of uniformly distributed ran-
dom numbers is the subject of Sects. 4.3–4.7. Sections 4.8 and 4.9 cover the
creation of random numbers that follow an arbitrary distribution and the espe-
cially common case of normally distributed numbers. In the last two sections
one finds discussion and examples of the Monte Carlo method in applications
of numerical integration and simulation.
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42 4 Random Numbers: The Monte Carlo Method

In many examples and exercises we will simulate measurements with
the Monte Carlo method and then analyze them. We possess in this way a
computer laboratory, which allows us to study individually the influence of
simulated measurement errors on the results of an analysis.

4.2 Representation of Numbers in a Computer

For most applications the representation of numbers used in a computation
is unimportant. It can be of decisive significance, however, for the proper-
ties of computer-generated random numbers. We will restrict ourselves to the
binary representation, which is used today in practically all computers. The
elementary unit of information is the bit,∗ which can assume the values of
0 or 1. This is realized physically by two distinguishably different electric or
magnetic states of a component in the computer.

If one has k bits available for the representation of an integer, then 1 bit is
sufficient to encode the sign. The remaining k −1 bits are used for the binary
representation of the absolute value in the form

a = a(k−2)2k−2 +a(k−3)2k−3 +·· ·+a(1)21 +a(0)20 . (4.2.1)

Here each of the coefficients a(j) can assume only the values 0 or 1, and thus
can be represented by a single bit.

The binary representation for non-negative integers is

00 · · ·000 = 0
00 · · ·001 = 1
00 · · ·010 = 2
00 · · ·011 = 3

...

One could simply use the first bit to encode the sign and represent the corre-
sponding negative numbers such that in the first bit the 0 is replaced by a 1.
That would give, however, two different representations for the number zero,
or rather +0 and −0. In fact, one uses for negative numbers the “complemen-
tary representation”

11 · · ·111 = −1
11 · · ·110 = −2
11 · · ·101 = −3

...

∗Abbreviation of binary digit.
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Then using k bits, integers in the interval

−2k−1 ≤ x ≤ 2k−1 −1 (4.2.2)

can be represented.
In most computers 8 bit are grouped together into one byte. Four bytes

are generally used for the representation of integers, i.e., k = 32, 2k−1 − 1 =
2147483647. In many small computers only two bytes are available, k = 16,
2k−1 − 1 = 32767. This constraint (4.2.2) must be taken into consideration
when designing a program to generate random numbers.

Before turning to the representation of fractional numbers in a com-
puter, let us consider a finite decimal fraction, which we can write in various
ways, e.g.,

x = 17.23 = 0.1723 ·102

or in general

x = M ·10e .

The quantities M and e are called the mantissa and exponent, respectively.
One chooses the exponent such that the mantissa’s nonzero digits are all to
the right of the decimal point, and the first place after the decimal point is not
zero. If one has available n decimal places for the representation of the value
M , then

m = M ·10n

is an integer. In our example, n = 4 and m = 1723. In this way the decimal
fraction d is represented by the two integers m and e.

The representation of fractions in the binary system is done in a com-
pletely analogous way. One decomposes a number of the form

x = M ·2e (4.2.3)

into a mantissa M and exponent e. If nm bits are available for the representa-
tion of the mantissa (including sign), it can be expressed by the integer

m = M ·2nm−1 , −2nm−1 ≤ m ≤ 2nm−1 −1 . (4.2.4)

If the exponent with its sign is represented by ne bits, then it can cover the
interval

−2ne ≤ e ≤ 2ne −1 . (4.2.5)

In our Java classes we use floating-point numbers of the type double with
64 bit, nm = 53 for the mantissa and ne = 11 for the exponent.
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For the interval of values in which a floating point number can be
represented in a computer, the constraint (4.2.2) no longer applies but one
has rather the weaker condition

2emin < |x| < 2emax . (4.2.6)

Here emin and emax are given by (4.2.5). If 11 bit are available for representing
the exponent (including sign), then one has emax = 210 −1 = 1023. Therefore,
one has the constraint |x| < 21023 ≈ 10308.

When computing with floating point numbers, the concept of the relative

precision of the representation is of considerable significance. There are a
fixed number of binary digits corresponding to a fixed number of decimal
places available for the representation of the mantissa M . If we designate by
α the smallest possible mantissa, then two numbers x1 and x2 can still be
represented as being distinct if

x1 = x = M ·2e , x2 = (M +α) ·2e .

The absolute precision in the representation of x is thus

∆x = x1 −x2 = α ·2e ,

which depends on the exponent of x. The relative precision

∆x

x
=

α

M

is in contrast independent of x. If n binary digits are available for the represen-
tation of the mantissa, then one has M ≈ 2n, since the exponent is chosen such
that all n places for the mantissa are completely used. The smallest possible
mantissa is α = 20, so that the relative precision in the representation of x is

∆x

x
= 2−n . (4.2.7)

4.3 Linear Congruential Generators

Since, as mentioned, computers work in a strictly deterministic way, all
(pseudo)"-random numbers generated in a computer are in the most general
case a function of all of the preceding (pseudo)random numbers†

xj+1 = f (xj ,xj−1, . . . ,x1) . (4.3.1)

Programs for creating random numbers are called random number generators.

†Since the numbers are pseudorandom and not strictly random, we use the notation x in
place of x.
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The best studied algorithm is based on the following rule,

xj+1 = (a xj + c) mod m . (4.3.2)

All of the quantities in (4.3.2) are integer valued. Generators using this rule are
called linear congruential generators (LCG). The symbol mod m or modulo
m in (4.3.2) means that the expression before the symbol is divided by m and
only the remainder of the result is taken, e.g., 6 mod 5 = 1. Each random
number made by an LCG according to the rule (4.3.2) depends only on the
number immediately preceding it and on the constant a (the multiplier), on c

(the increment), and on m (the modulus). When these three constants and one
initial value x0 are given, the infinite sequence of random numbers x0, x1, . . .

is determined.
The sequence is clearly periodic. The maximum period length is m. Only

partial sequences that are short compared to the period length are useful for
computations.

Theorem on the maximum period of an LCG with c %= 0:
An LCG defined by the values m, a, c, and x0 has the period m

if and only if

(a) c and m have no common factors;

(b) b = a − 1 is a multiple of p for every prime number p that
is a factor of m;

(c) b is a multiple of 4 if m is a multiple of 4.

The proof of this theorem as well as the theorems of Sect. 4.4
can be found in, e.g., KNUTH [2].

A simple example is c = 3, a = 5, m = 16. One can easily compute that
x0 = 0 results in the sequence

0, 3, 2, 13, 4, 7, 6, 1, 8, 11, 10, 5, 12, 15, 14, 9, 0, . . . .

Since the period m can only be attained when all m possible values are actu-
ally assumed, the choice of the initial value x0 is unimportant.

4.4 Multiplicative Linear Congruential Generators

If one chooses c = 0 in (4.3.2), then the algorithm simplifies to

xj+1 = (axj ) mod m . (4.4.1)

Generators based on this rule are called multiplicative linear congruential
generators (MLCG). The computation becomes somewhat shorter and thus
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faster. The exact value zero, however, can no longer be produced (except
for the unusable sequence 0, 0, . . .). In addition the period becomes shorter.
Before giving the theorem on the maximum period length for this case, we
introduce the concept of the primitive element modulo m.

Let a be an integer having no common factors (except unity) with m.
We consider all a for which aλ mod m = 1 for integer λ. The smallest value of
λ for which this relation is valid is called the order of a modulo m. All values
a having the same largest possible order λ(m) are called primitive elements

modulo m.

Theorem on the order λ(m) of a primitive element modulo m:

For every integer e and prime number p

λ(2) = 1 ;
λ(4) = 2 ;
λ(2e) = 2e−2 , e > 2 ;
λ(pe) = pe−1(p −1) , p > 2 .

(4.4.2)

Theorem on primitive elements modulo pe: The number a

is a primitive element modulo pe if and only if

a odd , pe = 2 ;
a mod 4 = 3 , pe = 4 ;
a mod 8 = 3,5,7 , pe = 8 ;
a mod 8 = 3,5 , p = 2 , e > 3 ;
a mod p %= 0 , a(p−1)/q mod p %= 1 , p > 2 , e = 1 ,

q every prime factor of p −1 ;
a mod p %= 0 , ap−1 mod p2 %= 1 , a(p−1)/q mod p %= 1 ,

p > 2 , e > 1 , q every prime factor of p −1 .
(4.4.3)

For large values of p the primitive elements must be determined with com-
puter programs with the aid of this theorem.

Theorem on the maximum period of an MLCG: The max-
imum period of an MLCG defined by the quantities m, a, c = 0,
x0 is equal to the order λ(m). This is attained if the multiplier a

is a primitive element modulo m and when the initial value x0
and the multiplier m have no common factors (except unity).

In fact, MLC generators with c = 0 are frequently used in practice. There
are two cases of practical significance in choosing the multiplier m.
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(i) m = 2e: Here m− 1 can be the largest integer that can be represented
on the computer. According to (4.4.2) the maximum attainable period
length is m/4.

(ii) m = p: If m is a prime number, the period of m − 1 can be attained
according to (4.4.2).

4.5 Quality of an MLCG: Spectral Test

When producing random numbers, the main goal is naturally not just to attain
the longest possible period. This could be achieved very simply with the
sequence 0, 1, 2, . . ., m − 1, 0, 1, . . .. Much more importantly, the individ-
ual elements within a period should follow each other “randomly”. First the
modulus m is chosen, and then one chooses various multipliers a correspond-
ing to (4.4.3) that guaranty a maximum period. One then constructs gener-
ators with the constants a, m, and c = 0 in the form of computer programs
and checks with statistical tests the randomness of the resulting numbers.
General tests, also applicable to this particular question, will be discussed
in Sect. 8. The spectral test was especially developed for investigating ran-
dom numbers, in particular for detecting non-random dependencies between
neighboring elements in a sequence.

In a simple example we first consider the case a = 3, m = 7, c = 0, x0 = 1
and obtain the sequence

1, 3, 2, 6, 4, 5, 1, . . . .

We now form pairs of neighboring numbers

(xj , xj+1) , j = 0,1, . . . ,n−1 . (4.5.1)

Here n is the period, which in our example is n = m− 1 = 6. In Fig. 4.1 the
number pairs (4.5.1) are represented as points in a two-dimensional Cartesian
coordinate system. We note – possibly with surprise – that they form a reg-
ular lattice. The surprise is somewhat less, however, when we consider two
features of the algorithm (4.3.2):

(i) All coordinate values xj are integers. In the accessible range of values
1 ≤ xj ≤ n there are, however, only n2 number pairs (4.5.1) for which
both elements are integer. They lie on a lattice of horizontal and vertical
lines. Two neighboring lines have a separation of one.

(ii) There are only n different pairs (4.5.1), so that only a fraction of the n2

points mentioned in (i) are actually occupied.

We now go from integer numbers xj to transformed numbers

uj = xj/m (4.5.2)
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with the property
0 < uj < 1 . (4.5.3)

For simplicity we assume that the sequence x0,x1, . . . has the maximum
possible period m for an MLC generator. The pairs

Fig.4.1: Diagram of number pairs (4.5.1) for a = 3, m = 7.

(uj , uj+1) , j = 0,1, . . . ,m−1 , (4.5.4)

lie in a square whose side has unit length. Because the xj are integers,
the spacing between the horizontal or vertical lattice lines on which the
points (4.5.4) must lie is 1/m. By far not all of these points, however,
are occupied. A finite family of lines can be constructed which pass through
those points that are actually occupied. We consider now the spacing of neigh-
boring lines within a family, look for the family for which this distance is a
maximum, and call this d2.

If the distances between neighboring lattice lines for all families are
approximately equal, we can then be certain of having a maximally uni-
form distribution of the occupied lattice points on the unit square. Since this
distance is 1/m for a completely occupied lattice (m2 points), we obtain for
a uniformly occupied lattice with m points a distance of d2 ≈ m−1/2. With a
very nonuniform lattice one obtains the considerably larger value d2 & m−1/2.
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If one now considers not only pairs (4.5.4), but t-tuples of numbers

(uj ,uj+1 , . . . ,uj+t−1) , (4.5.5)

one sees that the corresponding points lie on families of (t − 1)-dimen-
sional hyperplanes in a t-dimensional cube whose side has unit length. Let
us investigate as before the distance between neighboring hyperplanes of a
family. We determine the family with the largest spacing and designate this
by dt . One expects for a uniform distribution of points (4.5.5) a distance

dt ≈ m−1/t . (4.5.6)

If the lattice is nonuniform, however, we expect

dt & m−1/t . (4.5.7)

The situations (4.5.6) and (4.5.7) are shown in Fig. 4.2. Naturally one tries
to achieve as uniform a lattice as possible. One should note that there is at
least a distance (4.5.6) between the lattice points. The lowest decimal places
of random numbers are therefore not random, but rather reflect the structure
of the lattice.

Theoretical considerations give an upper limit on the smallest possible
lattice spacing,

Fig.4.2: Diagram of number pairs (4.5.4) for various small values of a and m.
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Table4.1: Suitable moduli m and multipliers a for portable MLC generators for computers
with 32-bit (16-bit) integer arithmetic.

32 bit 16 bit
m a m a

2 147 483 647 39 373 32 749 162
2 147 483 563 40 014 32 363 157
2 147 483 399 40 692 32 143 160
2 147 482 811 41 546 32 119 172
2 147 482 801 42 024 31 727 146
2 147 482 739 45 742 31 657 142

dt ≥ d∗
t = ctm

−1/t . (4.5.8)

The constants ct are of order unity. They have the numerical values [2]

c2 = (4/3)−1/4 , c3 = 2−1/6 , c4 = 2−1/4 , c5 = 2−3/10 ,

c6 = (64/3)−1/12 , c7 = 2−3/7 , c8 = 2−1/2 .
(4.5.9)

The spectral test can now be carried out as follows. For given values
(m,a) of the modulus and multiplier of an MLCG one determines with a
computer algorithm [2] the values dt (m,a) for small t , e.g., t = 2,3, . . . ,6.
One constructs the test quantities

St (m,a) =
d∗

t (m)

dt (m,a)
(4.5.10)

and accepts the generator as usable if the St (m,a) do not exceed a given
limit. Table 4.1 gives the results of extensive investigations by L’ECUYER

[3]. The moduli m are prime numbers close to the maximum integer values
representable by 16 or 32 bit. The multipliers are primitive elements modulo
m. They fulfill the requirement a <

√
m (see Sect. 4.6). The prime numbers

were chosen such that a does not have to be much smaller than
√

m, but the
condition (m,a) in Table 4.1 St (m,a) > 0.65, t = 2,3, . . . ,6, still applies.

4.6 Implementation and Portability of an MLCG

By implementation of an algorithm one means its realization as a computer
program for a specific type of computer. If the program can be easily trans-
ferred to other computer types and gives there (essentially) the same results,
then the program is said to be portable. In this section we will give a portable
implementation of an MLCG, as realized by WICHMANN and HILL [4] and
L’ECUYER [3].
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A program that implements the rule (4.4.1) is certain to be portable if the
computations are carried out exclusively with integers. If the computer has
k bits for the representation of an integer, then all numbers between −m− 1

and m for m < 2k−1 are available.
We now choose a multiplier a with

a2 < m (4.6.1)

and define

q = m div a , r = m mod a , (4.6.2)

so that

m = aq + r . (4.6.3)

The expression m div a defined by (4.6.2) and (4.6.3) is the integer part of
the quotient m/a. We now compute the right-hand side of (4.4.1), where we
leave off the index j and note that [(xdiv q)m] mod m = 0, since x div q is

an integer:

[ax] mod m = [ax − (x div q)m] mod m

= [ax − (x div q)(aq + r)] mod m

= [a{x − (x div q)q}− (x div q)r] mod m

= [a(x mod q)− (x div q)r] mod m . (4.6.4)

Since one always has 0 < x < m, it follows that

a(x mod q) < aq ≤ m , (4.6.5)

(x div q)r < [(aq + r) div q]r = ar < a2 < m . (4.6.6)

In this way both terms in square brackets in the last line of (4.6.4) are less
than m, so that the bracketed expression remains in the interval between

−m and m.
In the Java class we have implemented the expres-

sion (4.6.4) in the following three lines, in which all variables are integer:

k = x / Q;
x = A * (x − k * Q) − k * R;
if(x < 0) x = x + M;

One should note that division of two integer variables results directly in the
integer part of the quotient. The first line therefore yields x div q and the last

line ax mod m, respectively.
The method yields a partial sequence of ran-

dom numbers of length N . Each time the subroutine is called, an addi-

tional partial sequence is produced. The period of the entire sequence is

DatanRandom

DatanRandom.mlcg
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m − 1 = 2147483562. The computation is carried out entirely with integer
arithmetic, ensuring portability. The output values are, however, floating point
valued because of the division by m, and therefore correspond to a uniform
distribution between 0 and 1.

Often one would like to interrupt a computation requiring many random
numbers and continue it later starting from the same place. In this case one can
read out and store the last computed (integer) random number directly before
the interruption, and use it later for producing the next random number. In the
technical terminology one calls such a number the seed of the generator.

It is sometimes desirable to be able to produce non-overlapping partial
sequences of random numbers not one after the other but rather independently.
In this way one can, for example, carry out parts of larger simulation problems
simultaneously on several computers. As seeds for such partial sequences one
uses elements of the total sequence separated by an amount greater than the
length of each partial sequence. Such seeds can be determined without having
to run through the entire sequence. From (4.4.1) it follows that

xj+n = (anxj ) mod m = [(an mod m)xj ] mod m . (4.6.7)

L’ECUYER [3] suggests setting n = 2d and choosing some seed x0. The ex-
pression a2d

mod m can be computed by beginning with a and squaring it d

times modulo m. Then one computes xn using (4.6.7) and obtains correspond-
ingly x2n, x3n, . . . .

4.7 Combination of Several MLCGs

Since the period of an MLCG is at most m− 1, and since m is restricted to
m < 2k−1 −1 where k is the number of bits available in the computer for the
representation of an integer, only a relatively short period can be attained with
a single MLCG. WICHMANN and HILL [4] and L’ECUYER [3] have given a
procedure for combining several MLCGs, which allows for very long periods.
The technique is based on the following two theorems.

Theorem on the sum of discrete random variables, one of

which comes from a discrete uniform distribution: If x1, . . . ,x$
are independent random variables that can only assume integer
values, and if x1 follows a discrete uniform distribution, so that

P (x1 = n) =
1
d

, n = 0,1, . . . ,d −1 ,
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then

x =




$∑

j=1

xj



 mod d (4.7.1)

also follows this distribution.

We first demonstrate the proof for $ = 2, using the abbreviations min
(x2) = a, max(x2) = b. One has

P (x = n) =
∞∑

k=0

P (x1 +x2 = n+ kd)

=
b∑

i=a

P (x2 = i)P (x1 = (n− i) mod d)

=
1
d

b∑

i=a

P (x2 = i) =
1
d

.

For $= 3 we first construct the variable x′
1 = x1 +x2, which follows a discrete

uniform distribution between 0 and d −1, and then the sum x′
1 +x3, which has

only two terms and therefore possesses the same property. The generalization
for $ > 3 is obvious.

Theorem on the period of a family of generators: Con-
sider the random variables xj,i coming from a generator j with
a period pj , so that the generator gives a sequence xj,0,xj,1, . . . ,

xj,pj−1 . We consider now $ generators j = 1,2, . . . ,$ and the
sequence of $-tuples

xi = {x1,i,x2,i , . . . ,x$,i} , i = 0,1, . . . . (4.7.2)

Its period p is the smallest common multiple of the periods
p1,p2, . . . ,p$ of the individual generators. The proof is obtained
directly from the fact that p is clearly a multiple of each pj .

We now determine the maximum value of the period p. If the $ individual
MLCGs have prime numbers mj as moduli, then their periods are pj = mj −1
and are therefore even. Therefore one has

p ≤
∏$

j=1(mj −1)

2$−1 . (4.7.3)

Equality results if the quantities (mj −1)/2 possess no common factors.
The first theorem of this section can now be used to construct a sequence

with period given by (4.7.3). One forms first the integer quantity
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zi =




$∑

j=1

(−1)j−1xj,i



 mod (m1 −1) . (4.7.4)

The alternating sign in (4.7.4), which simplifies the construction of the
modulus function, does not contradict the prescription of (4.7.1), since one
could also use in place of x2,x4, . . ., the variables x ′

2 = −x2, x ′
4 = −x4, . . ..

The quantity zi can take on the values

zi ∈ {0,1, . . . ,m1 −2} . (4.7.5)

The transformation to floating point numbers

ui =
{

zi/m1 , zi > 0
(m1 −1)/m1 , zi = 0

(4.7.6)

gives values in the range 0 < ui < 1.
In the method we use the techniques, assem-

bled above, to produce uniformly distributed random numbers with a long
period. We combine two MLCGs with m1 = 2147483563, a1 = 40014,
m2 = 2147483399, a2 = 40692. The numbers (m1 − 1)/2 and (m2 − 1)/2
have no common factor. Therefore the period of the combined generator is,
according to (4.7.3),

p = (m1 −1)(m2 −1)/2 ≈ 2.3 ·1018 .

The absolute values of all integers occurring during the computation remain
in the range ≤ 231 −85. The resulting floating point values u are in the range
0 < u < 1. One does not obtain the values 0 or 1, at least if 23 or more bits are
available for the mantissa, which is almost always the case when represent-
ing floating point numbers with 32 bit. The program with the given values of
m1,m2,a1,a2 has been subjected to the spectral test and to many other tests
by L’ECUYER [3], who has provided a PASCAL version. He determined that
it satisfied all of the requirements of the tests.

Figure 4.3 illustrates the difference between the simple MLCG and the
combined generator. For the simple MLCG one can still recognize a struc-
ture in a scatter plot of the number pairs (4.5.4), although with an expansion
of the abscissa by a factor of 1000. The corresponding diagram for the com-
bined generator appears, in contrast, to be completely without structure. For
each diagram one million pairs of random numbers were generated. The plots
correspond only to a narrow strip on the left-hand edge of the unit square.

In order to initialize non-overlapping partial sequences one can use two
methods:

(i) One applies the procedure discussed in connection with (4.6.7) to both
MLCGs, naturally with the same value n, in order to construct pairs of
seeds for each partial sequence.

DatanRandom.ecuy
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(ii) It is considerably easier to use the same seed for the first MLCG for
every partial sequence. For the second MLCG one uses an arbitrary
seed for the first partial sequence, the following random number from
the second MLCG for the second partial sequence, etc. In this way one
obtains partial sequences that can reach a length of (m1 − 1) without
overlapping.

Fig.4.3: Scatter plots of number pairs (4.5.4) from (a) a MLC generator and (b) a combined

4.8 Generation of Arbitrarily Distributed Random

Numbers

4.8.1 Generation by Transformation of the Uniform Distribution

If x is a random variable following the uniform distribution,

f (x) = 1 , 0 ≤ x < 1 ; f (x) = 0 , x < 0 , x ≥ 1 , (4.8.1)

and y is a random variable described by the probability density g(y), the trans-
formation (3.7.1) simplifies to

g(y)dy = dx . (4.8.2)

generator. The methods
were used in the generation.

DatanRandom.mclg and DatanRandom.ecuy, respectively,
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We use the distribution function G(y), which is related to g(y) through
dG(y)/dy = g(y), and write (4.8.2) in the form

dx = g(y)dy = dG(y) , (4.8.3)

or after integration,

x = G(y) =
∫ y

−∞
g(t)dt . (4.8.4)

This equation has the following meaning. If a random number x is taken from
a uniform distribution between 0 and 1 and the function x = G(y) is inverted,

y = G−1(x) , (4.8.5)
then one obtains a random number y described by the probability density
g(y). The relationship is depicted in Fig. 4.4a. The probability to obtain a
random number x between x and x + dx is equal to the probability to have a
value y(x) between y and y +dy.

dx=g(y)dy

y1 yny2

yny2y1

y(x)
y

P(yj)

y

x = G(y)

P(yk)xj =∑
k = 1

y

g(y)

y

x = G(y) =  g(t)dt
−∞

y

11
x = G(y) j

∫

(a) (b)

Fig.4.4: Transformation from a uniformly distributed variable x to a variable y with the dis-
tribution function G(y). The variable y can be continuous (a) or discrete (b).

The relationship (4.8.4) can be also be used to produce discrete probability
distributions. An example is shown in Fig.4.4b. The random variable y can take
on the valuesy1,y2, . . . ,yn with the probabilitiesP (y1),P (y2), . . . ,P (yn). The
distribution function as given by (3.2.1) is G(y) = P (y < y). The construction
of a step function x = G(y) according to this equation gives the values

xj = G(yj ) =
i∑

k=1

P (yk) , (4.8.6)
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which lie in the range between 0 and 1. From this one can produce random
numbers according to a discrete distribution G(y) by first producing random
numbers x uniformly distributed between 0 and 1. Depending on the interval
j in which x falls, xj−1 < x < xj , the number yj is then produced.

Example 4.1: Exponentially distributed random numbers
We would like to generate random numbers according to the probability
density

g(t) =






1
τ

e−t/τ , t ≥ 0 ,

0 , t < 0 .

(4.8.7)

This is the probability density describing the time t of the decay of a ra-
dioactive nucleus that exists at time t = 0 and has a mean lifetime τ . The
distribution function is

x = G(t) =
1
τ

∫ t

t ′=0
g(t ′)dt ′ = 1− e−t/τ . (4.8.8)

According to (4.8.4) and (4.8.5) we can obtain exponentially distributed ran-
dom numbers t by first generating random numbers uniformly distributed
between 0 and 1 and then finding the inverse function t = G−1(x), i.e.,

t = −τ ln(1−x) .

Since 1 − x is also uniformly distributed between 0 and 1, it is sufficient to
compute

t = −τ lnx . (4.8.9)

Example 4.2: Generation of random numbers following a Breit–Wigner
distribution

To generate random numbers y which follow a Breit–Wigner distribution
(3.3.32),

g(y) =
2

πΓ

Γ 2

4(y −a)2 +Γ 2 ,

we proceed as discussed in Sect. 4.8.1. We form the distribution function

x = G(y) =
∫ y

−∞
g(y)dy =

2
πΓ

∫ y

−∞

Γ 2

4(y −a)2 +Γ 2 dy

and perform the integration using the substitution

u =
2(y −a)

Γ
, du =

2
Γ

dy .
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Thus we obtain

x = G(y) =
1
π

∫ θ=2(y−a)/Γ

θ=−∞

1
1+u2 du =

1
π

[arctanu]2(y−a)/Γ
−∞

=
arctan2(y −a)/Γ

π
+

1
2

.

By inversion we obtain

2(y −a)/Γ = tan
{
π

(
x −

1
2

)}
,

y = a +
Γ

2
tan
{
π

(
x −

1
2

)}
. (4.8.10)

If x are random numbers uniformly distributed in the interval 0 < x < 1, then
y follows a Breit–Wigner distribution.

Example 4.3: Generation of random numbers with a triangular distribution
In order to generate random numbers y following a triangular distribution as
in Problem 3.2 we form the distribution function

F(y) =






0 , y < a ,

(y −a)2

(b−a)(c−a)
, a ≤ y < c ,

1−
(y −b)2

(b−a)(b− c)
, c ≤ y < b ,

1 , b ≤ y .

In particular we have

F(c) =
c−a

b−a
.

Inverting x = F(y) gives

y = a +
√

(b−a)(c−a)x , x < (c−a)/(b−a) ,

y = b−
√

(b−a)(b− c)(1−x) , x ≥ (c−a)/(b−a) .

If x is uniformly distributed with 0 < x < 1, then y follows a triangular distri-
bution.

4.8.2 Generation with the von Neumann

Acceptance–Rejection Technique

The elegant technique of the previous section requires that the distribution
function x = G(y) be known and that the inverse function y = G−1(x) exists
and be known as well.
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Often one only knows the probability density g(y). One can then use the
VON NEUMANN acceptance–rejection technique, which we introduce with a
simple example before discussing it in its general form.

Example 4.4: Semicircle distribution with the simple acceptance–rejection
method

As a simple example we generate random numbers following a semicircular
probability density,

g(y) =
{

(2/πR2)
√

R2 −y2, |y| ≤ R ,

0, |y| > R .
(4.8.11)

Instead of trying to find and invert the distribution function G(y), we gener-
ate pairs of random numbers (yi ,ui). Here yi is uniformly distributed in the
interval available to y, −R ≤ y ≤ R, and ui is uniformly distributed in the
range of values assumed by the function g(y), 0 ≤ u ≤ R. For each pair we
test if

ui ≥ g(yi) . (4.8.12)

If this inequality is fulfilled, we reject the random number yi . The set of ran-
dom numbers yi that are not rejected then follow a probability density g(y),
since each was accepted with a probability proportional to g(yi).

The technique of Example 4.4 can easily be described geometrically.
To generate random numbers in the interval a ≤ y ≤ b according to the prob-
ability density g(y), one must consider in the region a ≤ y ≤ b the curve

u = g(y) (4.8.13)

and a constant
u = d , d ≥ gmax , (4.8.14)

which is greater than or equal to the maximum value of g(y) in that region.
In the (y,u) plane this constant is described by the line u = d. Pairs of random
numbers (yi ,ui) uniformly distributed in the interval a ≤ yi ≤ b, 0 ≤ ui ≤ d

correspond to a uniform distribution of points in the corresponding rectangle
of the (y,u)-plane. If all of the points for which (4.8.12) holds are rejected,
then only points under the curve u = g(y) remain. Figure 4.5 shows this situ-
ation for the Example 4.4. [It is clear that the technique also gives meaningful
results if the function is not normalized to one. In Fig. 4.5 we have simply set
g(y) =

√
R2 −y2 and R = 1.]

For the transformation technique of Sect. 4.8.1, each random number yi

required only that exactly one random number xi be generated from a uniform
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distribution and that it be transformed according to (4.8.5). In the acceptance–
rejection technique, pairs yi ,ui must always be generated, and a consider-
able fraction of the numbers yi – depending on the value of ui according
to (4.8.12) – are rejected. The probability for yi to be accepted is

E =
∫ b
a g(y)dy

(b−a)d
. (4.8.15)

Fig.4.5: All the pairs (yi ,ui ) produced are marked as points in the (y,u)-plane. Points above
the curve u = g(y) (small points) are rejected.

We can call E the efficiency of the procedure. If the interval a ≤ y ≤ b includes
the entire allowed range of y, then the numerator of (4.8.15) is equal to unity,
and one obtains

E =
1

(b−a)d
. (4.8.16)

The numerator and denominator of (4.8.15) are simply the areas con-
tained in the region a ≤ y ≤ b under the curves (4.8.13) and (4.8.14), respec-
tively. One distributes points (yi,ui) uniformly under the curve (4.8.14) and
rejects the random numbers yi if the inequality (4.8.12) holds. The efficiency
of the procedure is certainly higher if one uses as the upper curve not the
constant (4.8.14) but rather a curve that is closer to g(y).

With this in mind the acceptance–rejection technique can be stated in its
general form:

(i) One finds a probability density s(y) that is sufficiently simple that
random numbers can be generated from it using the transformation
method, and a constant c such that
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g(y) ≤ c · s(y) , a < y < b , (4.8.17)

holds.

(ii) One generates one random number y uniformly distributed in the inter-
val a < y < b and a second random number u uniformly distributed in
the interval 0 < u < 1.

(iii) One rejects y

u ≥
g(y)

c · s(y)
. (4.8.18)

After the points (ii) and (iii) have been repeated enough times, the resulting
set of accepted random numbers y follows the probability density g(y), since

P (y < y) =
∫ y

a
s(t)

g(t)

c · s(t)
dt =

1
c

∫ y

a
g(t)dt =

1
c
[G(y)−G(a)] .

If the interval a ≤ y ≤ b includes the entire range of y for both g(y) as well
as for s(y), then one obtains an efficiency

E =
1
c

. (4.8.19)

Example 4.5: Semicircle distribution with the general acceptance–rejection
method

One chooses for c · s(y) the polygon

c · s(y) =






0 , y < −R ,

3R/2+y , −R ≤ y < −R/2 ,

R , −R/2 ≤ y < R/2 ,

3R/2−y , R/2 ≤ y < R ,

0 , R ≤ y .

The efficiency is clearly

E =
πR2

2
·

1
2R2 −R2/4

=
2π
7

in comparison to

E =
πR2

2
·

1
2R2 =

π

4
as in Example 4.4.
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4.9 Generation of Normally Distributed Random Numbers

By far the most important distribution for data analysis is the normal distribu-
tion, which we will discuss in Sect. 5.7. We present here a program that can
produce random numbers xi following the standard normal distribution with
the probability density

f (x) =
1

√
2π

e−x2/2 . (4.9.1)

The corresponding distribution function F(x) can only be computed and in-
verted numerically (Appendix C). Therefore the simple transformation method
of Sect. 4.8.1 cannot be used. The polar method by BOX and MULLER [5]
described here combines in an elegant way acceptance–rejection with trans-
formation. The algorithm consists of the following steps:

(i) Generate two independent random numbers u1,u2 from a uniform dis-
tribution between 0 and 1. Transform v1 = 2u1 −1, v2 = 2u2 −1.

(ii) Compute s = v2
1 +v2

2.

(iii) If s ≥ 1, return to step (i).

(iv) x1 = v1
√

−(2/s) lns and x2 = v2
√

−(2/s) lns are two independent
random numbers following the standard normal distribution.

The number pairs (v1,v2) obtained from step (i) are the Cartesian coor-
dinates of a set of points uniformly distributed inside the unit circle. We can
write them as v1 = rcosθ, v2 = rsinθ using the polar coordinates r =

√
s, θ =

arctan(v2/v1). The point (x1,x2) then has the Cartesian coordinates

x1 = cosθ
√

−2lns , x2 = sinθ
√

−2lns .

We now ask for the probability

F(r) = P (
√

−2lns ≤ r) = P (−2lns ≤ r2)

= P (s > e−r2/2) .

Since s = r2 is by construction uniformly distributed between 0 and 1, one
has

F(r) = P (s > e−r2/2) = 1− e−r2/2 .

The probability density of r is

f (r) =
dF(r)

dr
= re−r2/2 .



4.10 Random Numbers According to a Multivariate Normal Distribution 63

The joint distribution function of x1 and x2,

F(x1,x2) = P (x1 ≤ x1, x2 ≤ x2) = P (rcosθ ≤ x1, rsinθ ≤ x2)

=
1

2π

∫ ∫

(x1<x1,x2<x2)

re−r2/2 dr dϕ

=
1

2π

∫ ∫

(x1<x1,x2<x2)

e−(x2
1+x2

2 )/2 dx dy

=
(

1
√

2π

∫ x1

−∞
e−x2

1 /2 dx1

)(
1

√
2π

∫ x2

−∞
e−x2

2/2 dx2

)
,

and illustrated in Fig. 4.6.

Fig.4.6: Illustration of the Box–Muller procedure. (a) Number pairs (v1,v2) are gener-
ated that uniformly populate the square. Those pairs are then rejected that do not lie in-
side the unit circle (marked by small points). (b) This is followed by the transformation
(v1,v2) → (x1,x2) .

Many other procedures are described in the literature for the generation
of normally distributed random numbers. They are to a certain extent more
efficient, but are generally more difficult to program than the BOX–MULLER

procedure.

4.10 Generation of Random Numbers According

to a Multivariate Normal Distribution

The probability density of a multivariate normal distribution of n variables
x = (x1,x2, . . . ,xn) is according to (5.10.1)

is the product of two distribution functions of the standard normal distribution.
The procedure is implemented in the method DatanRandom.standard-Normal
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φ(x) = k exp
{
−

1
2
(x−a)TB(x−a)

}
.

Here a is the vector of expectation values and B = C−1 is the inverse of the
positive-definite symmetric covariance matrix. With the Cholesky decompo-
sition B = DTD and the substitution u = D(x−a) the exponent takes on the
simple form

−
1
2

uTu = −
1
2
(u2

1 +u2
2 +·· ·+u2

n) .

Thus the elements ui of the vectors u follow independent standard normal
distributions [cf. (5.10.9)]. One obtains vectors x of random numbers by
first forming a vector u of elements ui which follow the standard normal
distribution and then performing the transformation

x = D−1
u+a .

4.11 The Monte Carlo Method for Integration

It follows directly from its construction that the acceptance–rejection tech-
nique, Sect. 4.8.2, provides a very simple method for numerical integration.
If N pairs of random numbers (y1,ui), i = 1,2, . . . ,N are generated accord-
ing to the prescription of the general acceptance–rejection technique, and if
N − n of them are rejected because they fulfill condition (4.8.18), then the
numbers N (or n) are proportional to the areas under the curves c · s(y) (or
g(y)), at least in the limit of large N , i.e.,

∫ b
a g(y)dy

c
∫ b
a s(y)dy

= lim
N→∞

n

N
. (4.11.1)

Since the function s(y) is chosen to be particularly simple [in the simplest
case one has s(y) = 1/(b−a)], the ratio n/N is a direct measure of the value
of the integral

I =
∫ b

a

g(y)dy =
(

lim
N→∞

n

N

)
c

∫ b

a

s(y)dy . (4.11.2)

Here the integrand g(y) does not necessarily have to be normalized, i.e., one
does not need to require ∫ ∞

−∞
g(y)dy = 1

as long as c is chosen such that (4.8.17) is fulfilled.

This procedure is implemented in the method DatanRandom.multivariate
Normal.
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Example 4.6: Computation of π

Referring to Example 4.4 we compute the integral using (4.8.11) with R = 1:

I =
∫ 1

0
g(y)dy = π/4 .

Choosing s(y) = 1 and c = 1 we obtain

I = lim
N→∞

n

N
.

We expect that when N points are distributed according to a uniform
distribution in the square 0 ≤ y ≤ 1, 0 ≤ u ≤ 1, and when n of them lie inside
the unit circle, then the ratio n/N approaches the value I = π/4 in the limit
N → ∞. Table 4.2 shows the results for various values of n and for various
sequences of random numbers. The exact value of n/N clearly depends on
the particular sequence. In Sect. 6.8 we will determine that the typical fluctu-
ations of the number n are approximately ∆n =

√
n. Therefore one has for

the relative precision for the determination of the integral (4.11.2)

∆I

I
=

∆n

n
=

1
√

n
. (4.11.3)

We expect therefore in the columns of Table 4.2 to find the value of π with
precisions of 10, 1, and 0.1%. We find in fact in the three columns fluctuations
in the first, second, and third places after the decimal point.

Table4.2: Numerical values of 4n/N for various values of n. The entries in the columns
correspond to various sequences of random numbers.

4n/N

n = 102 n = 104 n = 106

3.419 3.122 3.141
3.150 3.145 3.143
3.279 3.159 3.144
3.419 3.130 3.143

The Monte Carlo method of integration can now be implemented by a
very simple program. For integration of single variable functions it is usu-
ally better to use other numerical techniques for reasons of computing time.
For integrals with many variables, however, the Monte Carlo method is more
straightforward and often faster as well.
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4.12 The Monte Carlo Method for Simulation

Many real situations that are determined by statistical processes can be
simulated in a computer with the aid of random numbers. Examples are
automobile traffic in a given system of streets or the behavior of neutrons
in a nuclear reactor. The Monte Carlo method was originally developed for
the latter problem by VON NEUMANN and ULAM. A change of the parame-
ters of the distributions corresponds then to a change in the actual situation.
In this way the effect of additional streets or changes in the reactor can be
investigated without having to undertake costly and time consuming changes
in the real system. Not only processes of interest following statistical laws can
be simulated with the Monte Carlo method, but also the measurement errors
which occur in every measurement.

Example 4.7: Simulation of measurement errors of points on a line
We consider a line in the (t,y)-plane. It is described by the equation

y = at +b . (4.12.1)

If we choose discrete values of t

t0 , t1 = t0 +∆t , t2 = t0 +2∆t , . . . , (4.12.2)

then they correspond to values of y

yi = ati +b , i = 0,1, . . . ,n−1 . (4.12.3)

We assume that the values t0, t1, . . . of the “controlled variable” t can be set
without error. Because of measurement errors, however, instead of the values
yi , one obtains different values

y ′
i = yi + εi . (4.12.4)

Here εi are the measurement errors, which follow a normal distribution with
mean of zero and standard deviation σy (cf. Sect. 5.7).

(ti,y
′
i). Figure 4.7 as an example

displays 10 simulated points.

Example 4.8: Generation of decay times for a mixture of two different
radioactive substances

At time t = 0 a source consists of N radioactive nuclei of which aN decay
with a lifetime τ1 and (a − 1)N with a mean lifetime τ2, with 0 ≤ a ≤ 1.
Random numbers for two different problems must be used in the simulation
the decay times occurring: for the choice of the type of nucleus and for the
determination of the decay time of the nucleus chosen, cf. (4.8.9). The method

 The method Datan-
Random.line generates number pairs

DatanRandom.radio implements this example.
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Fig.4.7: Line in the (t,y)-plane and simulated measured values with errors in y.

of measurement points, scattering about a straight line
Example 4.7 is realized. Parameter input is interactive, output both numerical and
graphical.

4.13 Java Classes and Example Programs

Java Class for the Generation of Random Numbers

contains methods for the generation of random numbers
following various distributions, in particular

for the uniform, for the stan-

dard normal, and for the
multivariate normal Distribution. Further methods are used to illustrate

a simple MLC generator or to demonstrate the following examples.

Example Program 4.1: The class demonstrates the generation
of random numbers

One can choose interactively between three generators. After clicking on Go 100

random numbers are generated and displayed. The seeds before and after generation

are shown and can be changed interactively.

Example Program 4.2: The class demonstrates the generation

DatanRandom.ecuy
DatanRandom.standard-Normal
DatanRandom.multivariateNormal

DatanRandom

E1Random

E andom2R
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Example Program 4.3:

of decay times
Example 4.8 is realized. Parameter input is interactive, output in form of a histogram.

Example Program 4.4:

of random numbers from a multivariate normal distribution
The procedure of Sect. 4.10 is realized for the case of two variables. Parameter input
is interactive. The generated number pairs are displayed numerically.

The class demonstrates the simulationE andom3R

The class demonstrates the generationE andom4R
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