PH3010 MSci Skills Project
X-ray simulation with the Monte Carlo method

1 Introduction

In this project you will investigate the production of x-rays and their interactions with matter
using the Monte Carlo method. This is a technique for simulating processes using sequences
of random numbers. The first part of the problem is to simulate the production of individual
photons, each having a different energy. The energies are chosen ‘at random’ in such a way that
the values follow a given distribution.

We then allow each photon to hit a layer of matter (in the example below, 1 mm beryllium).
There is a certain probability for the photon to be absorbed, and this probability depends on
the photon’s energy. So for each photon we ‘toss a coin’ (in the computer, of course) to decide
whether the photon makes it through. We can then make a histogram of the energies of the
photons which penetrate the layer.

Your assignment is to simulate the production of x-ray photons from a synchrotron radiation
source and to simulate their passage through a layer of matter. The main objectives include the
following;:

e simulate random numbers uniformly distributed between 0 and 1;

e use the uniformly distributed numbers to simulate photon energies using the acceptance—
rejection technique;

e simulate the absorption of photons in matter;
e make histograms of the energies of the photons which are not absorbed;

e determine the mean energy of photons versus the thickness of the absorber.

In addition, the project can be extended in a number of ways and for a first-class mark it is
expected that you achieve some of the extension objectives as well. These will be described
further along. Background information on the statistical methods used for the project can be
found in Refs. [1, 2, 3] and in the chapters on Probability, Statistics and Monte Carlo from
Ref. [4].

2 CH++ framework for the project

The project should be implemented in the C4++ language using the linux computer linappserv0
of the Particle Physics group. To access linappserv0, you need an X11-capable terminal window
on a networked computer. You can get this using the program cygwin from the PCs in the
teaching lab, or you can install cygwin on your own laptop (if you have windows) or you can
install X11 on a Macintosh. Some further information is provided on the course page for PH4515
(Statistical Data Analysis):

http://www.pp.rhul.ac.uk/"cowan/stat_course.html

The computing notes on the PH4515 page also contain some information on how to program
with C++ in the linux environment and on how to use the data analysis package ROOT.
ROQT is both a C++ class library as well as an executable program that allows one to display
and manipulate histograms. Acquiring some degree of familiarity with ROOT is an important
element of this project. The statistics notes from the PH4515 web page also contain useful
background information on the Monte Carlo method.

3 The Warm-up project: simpleMC

Before beginning to write your own Monte Carlo program you should first carry out the “warm-
up” project simpleMC. The ingredients are located here:

http://www.pp.rhul.ac.uk/ cowan/ph3010/xray/simpleMC/

You should download the files into a separate working directory on linappserv(Q along with the
“makefile” GNUMakefile. You can copy files directly from the web server into your working
directory on linappserv0 using, e.g.,

cp ~cowan/WWW/ph3010/xray/simpleMC/* ./
Then from your working directory, enter
gmake

followed by return. This will create the executable program simpleMC. To run the program,
type

./simpleMC

followed by return. This will create an output file called sipleMC.root, which contains a
histogram of uniformly distributed random values.

The program simpleMC uses the random number generator supplied by the data analysis
package ROOT. ROOT includes a C++ class called TRandom3. As with all ROOT classes it
begins with the letter T, and the easiest way to find the web page with the class definition is
through google, which will direct you to

http://root.cern.ch/root/html/TRandom3.html

Here you will see that TRandom3 contains a member function Rndm, which generates random
numbers that are uniformly distributed between zero and one. In a similar way you can find
information about the class TFile, which is used to create the output file and TH1D, which is
used for creating histograms.

To look at the histogram stored in the output file simpleMC.root, you can use the executable
program root. To run the program on linappserv(, simply type root. From here you can enter
commands at the root prompt, but it is much more efficient to store the commands in a file (a
“macro”). An example is shown in the file plotUniform.C. The root commands are essentially
the same as statements in the C++ language. To execute the macro, type

.x plotUniform.C

To quit from root type .q. As you work through the project you will want to create more
sophisticated macros to create different kinds of plots. Further information on root can be
found from Ref. [5], which contains links to numerous tutorials and examples.

4 Generating random numbers

Simulation of random processes by the Monte Carlo method can be broken down into two basic
steps. First, random numbers are generated which follow a uniform distribution between 0 and
1. Next, these are used to generate random numbers which correspond to physical quantities
(such as photon energies), which in general have a different frequency distribution. This second
step is described in Sec. 5.

In the program simpleMC, uniformly distributed random numbers are generated using the
class TRandom3, and you can simply continue to use this generator for the project. One of the
possible extensions to the project, however, is to write your own random number generator, and
so in this section some additional information on this is supplied.

There are many computer algorithms available for producing uniformly distributed random
numbers. They produce a sequence of numbers according to a certain rule, and would produce
the same sequence if you repeat the procedure. In this sense they are not truly random, and
therefore are often called pseudorandom. For our purposes this is just as good.

A simple but effective algorithm is the multiplicative linear congruential generator (MLCG).
This generates a sequence of integer values ni,ns, ... according to the rule

ni+1 = (an;) mod m. (1)

Here the multiplier a and modulus m are integer constants and the mod (modulo) operator means
that you take the remainder of an; divided by m. The values n; follow a periodic sequence in
the range [1, m — 1]. The initial value ng is called the seed. The transformation

ri =n;/m (2)

then gives numbers in the interval (0,1).

The art of random number generation is to choose a and m so that the resulting values r
perform well in various tests of randomness. For a 32-bit integer representation, for example,
m = 2147483399 and a = 40692 have been shown to give good results [6].

You may wish to try implementing your own random number generator using, for example,
the MLCG algorithm. Notice, however, that if you implement the MLCG rule given by Eq. (1),
the quantity an; can easily be larger than the maximum value that you can store in a variable of
type int. There are some tricks needed to avoid an arithmetic overflow, and these are described,
e.g., in the book by Brandt [1].

5 Simulation of x-ray photons from synchrotron radiation

When a charged particle such as an electron traverses a magnetic field, it emits electromagnetic
radiation (photons) tangential to its direction of motion. The energy spectrum of these photons
has a certain derivable form which depends on the electron’s energy and the strength of the
magnetic field. This is difficult to calculate, but fortunately we don’t have to; spectra can be
obtained from the Center for X-ray Optics at the Lawrence Berkeley National Laboratory at
http://www.cxro.1lbl.gov/. Follow the links to ‘x-ray database’, and then ‘synchrotron bend
magnet radiation’. You can choose various parameters for the electron beam to produce energy

spectra such as the one shown in Fig. 1. The data can be downloaded into a file for use in your
project.

Angle=0.mrad, 1.5GeV, 400.mA, 1.04T

1.5x10"

1013

Photons/sec/mr°2,/0.1%BW

5x10%?

ol R -] \ Figure 1: A photon energy spec-
0 5000 10 1.5x10 trum from a synchrotron radiation
Photon Energy (eV) source.

Once you have obtained a spectrum like Fig. 1, the next step is to generate photon energies
such that the probability to obtain a given energy is proportional to the height of the curve.
The easiest way to do this is with the acceptance—rejection technique.

e First generate two independent random numbers, r1 and 79, both uniformly distributed
between 0 and 1.

e Use r; and 79 to produce two more numbers: E = 71 Fyax and f = 79 finax, where Enay is
the maximum photon energy and fi.x is at least as high as the maximum of the energy
spectrum. For Fig. 1, for example, use Fyax = 1.5 X 10* and fmax = 1.8 x 1013, The two
numbers F and f will be represented by a point somewhere on the energy spectrum plot.

e If the point (F, f) is below the curve, accept E as the generated photon energy, otherwise,
reject the value and repeat the procedure until a value is accepted.

The probability to accept the point is proportional to the height of the curve, so the accepted
energies will have the desired distribution.

As a check of this part of the calculation, you should show a histogram of your generated
photon energies on a plot with the original energy spectrum superimposed. To make a meaningful
comparison, the area under the two plots must be scaled to the same value. For this it is most

convenient to normalize both to unit area. You will need to consider carefully how to do this
for both distributions.

6 Interaction of x-rays with matter

We will imagine that the x-rays hit a layer of material of a given thickness z. We would like
to know how many of the photons make it out the other side and what their energies are. The
probability for a photon to be absorbed by the photoelectric effect before penetrating a distance
x can be expressed as

P(y of energy E absorbed before) = 1 — e /A (F) (3)

where A\(F) is the attenuation length, which is in general a complicated function of the photon’s
energy. Attenuation lengths measured as a function of energy can be downloaded from the
Center for X-ray Optics for a variety of materials; an example for beryllium is shown in Fig. 2.
(Follow the links ‘x-ray interactions with matter’, ‘attenuation length’.)

Be Density=1.848, Angle=90.deg

100 1000 10*

Atten Length (microns)
10

* Figure 2: Attenuation length for x-
: rays in beryllium as a function of
energy.

0.1

Ll L Ll L Ll
100 1000 10*

Photon Energy (eV)

The strategy is thus to start by generating a photon with a certain energy. For this energy,
determine the attenuation length A\(E) and from (3) the probability P for the photon to be
absorbed before making it through a given thickness of material, e.g. = = 1 mm beryllium.
Then generate another random number r between 0 and 1. If » < P, we say that the photon
is absorbed, if not, it makes it through. (In fact, a real photon may make it through but its
energy can be degraded by Compton scattering. For now we will ignore this effect.)

You will then have a subset of the photons which make it through the layer of material,
and you should make a histogram of their energies. Generate enough events so that the energy
spectrum of the photons getting through is reasonably well determined.

As a minimum you should determine the mean photon energy as a function of the thickness
of a given absorber and show on an appropriate plot. As the mean energy will be determined
with a finite number of simulated photons, it will have a statistical error which you should
calculate for each point and display. Should time permit, you can try varying the parameters of
the problem such as the thickness of the composition, the nature of the photon source, etc.

7 Software implementation

This section gives some advice on how to implement the calculation described above in a C++
program. At different stages it is necessary to read in columns of numbers from a file that you
get from the website www.cxro.1lbl.gov. The numbers can be thought of as x and y values, i.e.,
you read in pairs of numbers (z;,y;) for ¢ = 1,...,n. Using these one needs an approximation
for the function y(z) for arbitrary x, that is, even at values of x that do not coincide with any
of the z; that were initially read in.

This task arises, for example, when obtaining the spectrum f(FE) of the photon energies by
using the numbers (f;, F;) read in from a file. And one has essentially the same problem when
obtaining the attenuation length A(E). So to carry out this task, it is useful to create a C++
class that can read in a file containing two columns of numbers, say, x and y, and the class
should contain a method that returns the function y(x), which can be based on an interpolation
between the (z;,y;) points from the file. The basic idea is illustrated in Fig. 3.

-{-\(x;““é;h)

tj,(x) ————————
J

(x"‘g") Figure 3: Illustration of the
interpolation between points to

approximate the function y(x).

p B SR

The suggested method for dealing with this problem is to create a class called, say,
FunctionFromTable, since its purpose is to take as input a table of numbers, i.e., the points
(zi,yi), © = 1,...,n and to provide a function y(x), that could be evaluated with any value of
x. An example of such a class is provided in

http://www.pp.rhul.ac.uk/ cowan/ph3010/xray/FunctionFromTable/

A test program testFunctionFromTable together with a sample data file energy_spectrum.txt
illustrates how the class is used. To begin the project you can simply use this class. As extension
objectives, you could introduce at least two improvements.

First, to find the to points x; and z;; which bracket the input value x, the class currently
loops over all values of x; starting from ¢ = 0 and determines whether the input value = lies
in the range z; < ¢ < x;41. As x can be anywhere in the range of allowed values, the average
number of computing steps required to locate the bracketing pair (x;, x;41) is proportional to
the number of points in the table.

A more elegant and much faster method would be to use a binary search, where the list of
x; values is first cut in half and one determines in which of the two halves the input value x is
located. The half containing « is then redefined as the range of = where one searches and the
procedure is iterated until the range consists of just two adjacent points. One can show that

the number of computing steps required to bracket a given z value grows only logarithmically
with the number of points in the table.

A second improvement would be to use a spline function to interpolate between points
rather than a straight line. A simple version of this called a cubic spline can be understood
again from Fig. 3 by considering the set of four x values z;_1, x;, ;41 and x;12, where the input
x value lies in the range z; < = < z;41. The set of four (z,y) points (called knots) uniquely
determine a cubic equation, and it is this equation that is used to provide the interpolated value.

The cubic spline of course requires that there be two values in the table on each side of
the input x value, so special treatment must be provided for the edges of the range. In the
regions between the first and last pairs of points, for example, one can simply do a linear
interpolation. For the purposes of the present project, such a spline fit does not bring a significant
improvement but it is an interesting and useful numerical method and if you have time you can
either implement this yourself or use an external routine such as TSpline3 from the root library.

8 Including Compton scattering

Monte Carlo simulations like the one in this project are an important element of many
experiments. For particle physics detectors such as those at the Large Hadron Collider, the
simulations can model complex interactions of many types of particles and have millions of lines
of code.

As a very small step in this direction, a possible extension to the x-ray simulation is to allow
for processes other than photo-electric absorption as the photon passes through matter. For
higher photon energies, there is a significant probability that the photon will undergo Compton
scattering with an atomic electron. In this way, the photon is scattered (in effect re-emitted) with
a reduced energy and changed direction. The simulation must continue to track the progress of
the new photon until it either exits the material or is finally absorbed.

This is a very ambitious extension and will not be described in detail in this project script.
Some brief notes are included on the project web page; for more information please discuss with
your supervisor.

9 Project report
Your project report should contain the following elements:

e A brief overview of the physical processes that are being modeled.

e A description of the important mathematical techniques that you implement in software,
including generation of random numbers and the Monte Carlo method. If, for example,
you include a spline fit or binary search, then this should be described.

e A brief description of how the mathematical concepts were implemented in your code. For
this you may want to include small portions of code in the body of the report.

e A description of the error analysis (e.g., the statistical errors for the average photon
energy).

e Plots of all relevant distributions containing appropriate labels and captions.

e All of your code should be included as an appendix.

Try to organise your report in a meaningful way. The introduction should state what the
project covers and give a road map to the rest of the report. Consider the order in which
information is presented.

Think carefully about what information the reader already knows and what needs to be
explained and defined. For this you should assume your reader has a general background in
physics but no specialist knowledge about the Monte Carlo method or x-ray interactions.

Consider carefully the precise meaning of your words. If you write “calculate” than this
should be exactly what you mean (not estimate, measure, compute).

In your conclusions, summarise what one can conclude from the numerical investigations you
have carried out and discuss briefly how they could be extended.

10 References

This script and links to other resources can be found on the project web page:
www.hep.ph.rhul.ac.uk/~ cowan/ph3010/xray/

X-ray data can be obtained from the web site of the Center for X-ray Optics at the Lawrence
Berkeley National Laboratory: www.cxro.1lbl.gov/.

Further references are listed below:

References

[1] S. Brandt, Statistical and Computational Methods in Data Analysis, Springer, New York
(1997).

[2] G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford (1998).

[3] L. Lyons, Statistics for Nuclear and Particle Physicists, Cambridge University Press,
Cambridge (1986).

[4] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010); pdg.1bl.gov.
[5] Weg page of the root data analysis framework root.cern.ch.

[6] P.L. L’Ecuyer, Efficient and portable combined random number generators, Commun.

ACM 31 (1988) 742.

G. Cowan, November 2014

