PH3930 (Particle Astrophysics)

Problem sheet 3

To be turned in by Friday 7 February, 2003, 17:00.

1: Consider the universe at a point when the temperature was T=30 GeV.

- (a) Find the effective number of degrees of freedom g_* .
- (b) What is the total energy density in GeV^4 ?
- (c) At what time was this temperature reached?
- (d) What was the number density of u quarks?
- (e) What was the number density of Z bosons at this temperature? (The chemical potential for Z bosons is zero. Optional question: Explain why.)
- 2: You are kidnapped by space aliens who place you in suspended animation. When you awake, you are in a spaceship whose instruments indicate a CMBR temperature of 1.73 K. How long has it been since you were abducted? Take for the time of the abduction $t_a = 1.5 \times 10^{10}$ years after the Big Bang and assume that the energy density is and continues to be dominated by nonrelativistic matter.
- **3(a):** Suppose the universe starts with equal amounts of baryons and antibaryons, i.e.,

$$n_{\rm b} = n_{\overline{\rm b}}$$
.

Assume further that there are no baryon number violating processes to allow this to change. Consider temperatures below around $T \approx 0.05$ GeV, so that the only relativisitic particles in thermal equilibrium are e^{\pm} , neutrinos and photons.

- (a) What is the effective number of degrees of freedom g_* at this temperature? (Treat muons as non-relativistic.)
- (b) At this temperature, quarks and gluons have become bound into neutrons and protons, which are non-relativistic. Riotto gives for the baryon–antibaryon annihilation cross section times speed at this energy

$$\langle \sigma v \rangle \approx \frac{1}{m_{\pi}^2} \,,$$

where $m_{\pi}=0.14$ GeV is the pion mass. Plot the baryon–antibaryon annihilation rate $\Gamma=n_b\langle\sigma v\rangle$ versus temperature in the range up to T=50 MeV. Also plot the expansion rate H as a function of temperature in this range. (Use mathematica or whatever you like.)

- (c) At what temperature do you find $\Gamma=H$? At this temperature, baryon–antibaryon annihilation 'freezes out', i.e., the baryons and antibaryons are too spread out to annihilate and their number density will scale as $n_{\rm b} \propto R^3 \propto 1/T^3$, just like photons.
- (d) Compute at this temperature the baryon density $n_{\rm b}$ (equal to the antibaryon density in this scenario), the photon density n_{γ} and their ratio. You should find a number that is much smaller than the actual measured value of $n_{\rm b}/n_{\gamma} \approx 5 \times 10^{-10}$.
- G. Cowan
- 30 January, 2003