PH3930 (Particle Astrophysics) Problem sheet 7 Due 17:00, Friday 14 March, 2003

1(a) Suppose the number density of magnetic monopoles is given by

$$n_{\rm m} = \frac{1}{(2t_{\rm GUT})^3} \; ,$$

where $t_{\rm GUT}$ is the time where the temperature reaches $T_{\rm GUT} \approx 10^{16}$ GeV. Assuming the mass of magnetic monopoles is $m_{\rm m} \approx M_{\rm X}/\alpha_{\rm U} \approx 10^{17}$ GeV, find the energy density of monopoles in GeV⁴. (Hints: Take $g_* \approx 10^2$ to relate $t_{\rm GUT}$ to $T_{\rm GUT}$; keep time in units of GeV⁻¹.)

- (b) Compare the answer from (a) to the energy density of photons at $T_{\rm GUT}$.
- (c) Assuming that the scale factor follows $R \propto t^{1/2}$, find the time in seconds when the energy density of monopoles and photons becomes equal. (Hint: Use the fact that $\rho \propto 1/R^4$ for photons but as $1/R^3$ for the nonrelativistic monopoles.)
- **2(a)** Sketch a possible potential $V(\phi)$ for an inflaton field ϕ and describe qualitatively how the state of the field evolves through the period of inflation.
- (b) Describe qualitatively how inflation leads to density fluctuations in the early universe.
- (c) Describe qualitatively how density fluctuations in the early universe lead to temperature variations in the CMBR measured from different directions. Does a lower CMBR temperature correspond to a region of higher or lower density? (Explain.)
- **3** Consider a neutralino with mass $m_{\chi} = 100$ GeV. Suppose that at a temperature of T = 5 GeV, the annihilation rate Γ drops below the expansion rate H.
- (a) What is the number density n_{χ} of neutralinos in cm⁻³ at this point (i.e., at T=5 GeV)?
- (b) Consider a comoving volume R^3 . Make a sketch (with mathematica or by hand) of the number of neutralinos N_{χ} in this volume as a function of temperature. Use a logarithmic scale for both axes and consider temperatures from 1000 GeV down to 0.1 GeV.
- (c) What would be n_{χ} today in cm⁻³?
- (d) What would be $\Omega_{\chi} = \rho_{\chi}/\rho_{c}$ today?

G. Cowan

6 March 2003