Chapter 1

Fundamental Concepts

Exercise 1.1: Consider a sample space S and assume for a given subset B that P(B) > 0. Show that the conditional probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \tag{1.1}$$

satisfies the axioms of probability.

Exercise 1.2: Show that

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

(Express $A \cup B$ as the union of three disjoint sets.)

Exercise 1.3: A beam of particles consists of a fraction 10^{-4} electrons and the rest photons. The particles pass through a double-layered detector which gives signals in either zero, one or both layers. The probabilities of these outcomes for electrons (e) and photons (γ) are

P(0 e) = 0.001	and	$P(0 \mid \gamma) = 0.99899$
P(1 e) = 0.01		$P(1 \mid \gamma) = 0.001$
P(2 e) = 0.989		$P(2 \gamma) = 10^{-5} .$

(a) What is the probability for a particle detected in one layer only to be a photon?

(b) What is the probability for a particle detected in both layers to be an electron?

Exercise 1.4: Suppose a random variable x has the p.d.f. f(x). Show that the p.d.f. for $y = x^2$ is

$$g(y) = \frac{1}{2\sqrt{y}}f(\sqrt{y}) + \frac{1}{2\sqrt{y}}f(-\sqrt{y}).$$
 (1.2)

Exercise 1.5: Suppose two independent random variables x and y are both uniformly distributed between zero and one, i.e. the p.d.f. g(x) is given by

$$g(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \text{otherwise} , \end{cases}$$
(1.3)

and similarly for the p.d.f. h(y).

(a) Using SDA equation (1.35), show that the p.d.f. f(z) for z = xy is

$$f(z) = \begin{cases} -\log z & 0 < z < 1\\ 0 & \text{otherwise} . \end{cases}$$
(1.4)

(b) Find the same result using SDA equations (1.37) and (1.38) by defining an additional function, u = x. First, find the joint p.d.f. of z and u. Integrate this over u to find the p.d.f. for z.

(c) Show that the cumulative distribution of z is

$$F(z) = z(1 - \log z).$$
(1.5)

Exercise 1.6: Consider a random variable x and constants α and β . Show that

$$E[\alpha x + \beta] = \alpha E[x] + \beta,$$

$$V[\alpha x + \beta] = \alpha^2 V[x].$$
(1.6)

Exercise 1.7: Consider two random variables x and y.

(a) Show that the variance of $\alpha x + y$ is given by

$$V[\alpha x + y] = \alpha^2 V[x] + V[y] + 2\alpha \text{cov}[x, y]$$

= $\alpha^2 V[x] + V[y] + 2\alpha \rho \sigma_x \sigma_y$, (1.7)

where α is any constant value, $\sigma_x^2 = V[x]$, $\sigma_y^2 = V[y]$, and the correlation coefficient is $\rho = \cos[x, y]/\sigma_x \sigma_y$.

(b) Using the result of (a), show that the correlation coefficient always lies in the range $-1 \leq \rho \leq 1$. (Use the fact that the variance $V[\alpha x + y]$ is always greater than or equal to zero and consider the cases $\alpha = \pm \sigma_y / \sigma_x$.)

Exercise 1.8: Suppose $\mathbf{x} = (x_1, \ldots, x_n)$ is described by the joint p.d.f. $f(\mathbf{x})$, and the variables $\mathbf{y} = (y_1, \ldots, y_n)$ are defined by means of a linear transformation,

$$y_i = \sum_{j=1}^n A_{ij} x_j.$$
 (1.8)

Assume that the inverse transformation $\mathbf{x} = A^{-1}\mathbf{y}$ exists.

(a) Show that the joint p.d.f. for \mathbf{y} is given by

$$g(\mathbf{y}) = f(A^{-1}\mathbf{y}) |\det(A^{-1})|.$$
(1.9)

(b) Find $g(\mathbf{y})$ for the case where A is orthogonal, i.e. $A^{-1} = A^T$.