
Chapter 10

Characteristic Functions

Exercise 10.1: Show that the characteristic function of the Gaussian p.d.f.,

f(x;µ,σ2) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)

, (10.1)

is given by

φ(k) = exp(iµk − 1
2
σ2k2) . (10.2)

Exercise 10.2: Show that the characteristic function of the exponential p.d.f.,

f(x; ξ) =
1

ξ
e−x/ξ, (10.3)

is given by

φ(k) =
1

1− ikξ
. (10.4)

Exercise 10.3: Show that the characteristic function of the χ2 p.d.f. for n degrees of freedom,

f(z;n) =
1

2n/2Γ(n/2)
zn/2−1e−z/2, (10.5)

is given by

φ(k) = (1− 2ik)−n/2. (10.6)

For this you will need the definition of the gamma function,

Γ(x) =
∫ ∞

0
e−t tx−1 dt. (10.7)
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Exercise 10.4: Suppose the random variables x1, . . . , xn are independent and each follow a
Gaussian distribution of mean µ and variance σ2. As seen in Chapters 5 and 6, the sample
mean

x =
1

n

n∑

i=1

xi (10.8)

can be used as an estimator for the mean µ.

(a) Find the characteristic function for the sample mean.

(b) From this, show that the p.d.f. for x is itself Gaussian, and find its mean and variance.

Exercise 10.5 Using the characteristic function, show that the first four algebraic moments of
the Gaussian distribution are

E[x] = µ

E[x2] = µ2 + σ2

E[x3] = µ3 + 3µσ2

E[x4] = 3(µ2 + σ2)2.

(10.9)

Exercise 10.6: (a) Using the characteristic function, show that the mean and variance of the
χ2 distribution for n degrees of freedom are n and 2n, respectively.

(b) Suppose z follows the χ2 distribution for n degrees of freedom. Show that in the limit of
large n this becomes a Gaussian distribution with mean µ = n and variance σ2 = 2n. To do
this, define the variable

y =
z − n√

2n
, (10.10)

which has a mean of zero and standard deviation of unity. Show that the characteristic function
for y is

φy(k) = e−ik
√

n/2φz

(
k√
2n

)
. (10.11)

Expand the logarithm of φy(k) and retain terms that do not vanish in the limit of large n.
Transform back to the original variable z to obtain the final result.

Exercise 10.7: Suppose n independent random variables x1, . . . , xn each follow a standard
Gaussian distribution, i.e.,

ϕ(xi) =
1√
2π

e−x2
i
/2 (10.12)

for all i, and consider

y =

(
n∑

i=1

x2i

)1/2

. (10.13)
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(a) First consider only one of the xi. By transformation of variables, show that the p.d.f. of
u = x2i is

f(u) =
1√
2πu

e−u/2. (10.14)

This is the χ2 distribution for one degree of freedom.

(b) Show that the characteristic function of u is

φu(k) =
1√

1− 2ik
. (10.15)

(c) Using the addition theorem, find the characteristic function for

v =
n∑

i=1

x2i . (10.16)

(d) Using transformation of variables, show that the p.d.f. for y = (
∑n

i=1 x
2
i )

1/2 is

h(y) =
1

2n/2−1Γ(n/2)
yn−1 e−y/2. (10.17)

This is a special case of the gamma distribution.

(e) Write down the p.d.f. for n = 3. This is the Maxwell-Boltzmann distribution. Suppose the
velocity components of molecules in a gas vx, vy and vz are independent Gaussian variables with
mean values of zero, and standard deviations σ. Write down the p.d.f. for the molecular speed
v = (v2x + v2y + v2z)

1/2.

(f) Write down the p.d.f. for n = 1. That is, if x follows a standard Gaussian, what is the p.d.f.
of y = |x|?

Exercise 10.8: Consider a variable x distributed according to the Cauchy (Breit-Wigner) p.d.f.,

f(x) =
1

π

1

1 + x2
. (10.18)

(a) Show that the characteristic function is

φ(k) = e−|k|. (10.19)

(Use the residue theorem and close the integral in the upper half plane for k > 0, and in the
lower half plane for k < 0.)

(b) Consider a sample of n observations of a Cauchy distributed variable x. Using the addition
theorem with the characteristic function from (a), show that the sample mean x = 1

n

∑n
i=1 xi

also follows the Cauchy p.d.f. This is a rare case where the p.d.f. of x does not change as the
sample size increases, and is related to the fact that the moments of the Cauchy distribution
does not exist.
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Exercise 10.9: The Dirac delta function,

f(x;µ) = δ(x− µ), (10.20)

is defined by

δ(x− µ) = 0 for x #= µ ,
∫ ∞

−∞
δ(x− µ) dx = 1.

(10.21)

That is, δ(x − µ) has an infinitely sharp peak at x = µ and is zero elsewhere. Find the
characteristic function of δ(x−µ), and use this to obtain an integral representation of the delta
function.


