Chapter 11

Unfolding

Exercise 11.1: Consider the detector set-up shown in Fig. 9.1. Suppose the resolution function for x is Gaussian,

$$s(x|x') = \frac{1}{\sqrt{2\pi}\sigma_x} \exp\left[-\frac{(x-x')^2}{2\sigma_x^2}\right]. \tag{11.1}$$

Find the resolution function for $\cos \theta = x/\sqrt{x^2 + d^2}$.

Exercise 11.2: Consider the Tikhonov regularization function with k=1 for a histogram $\boldsymbol{\mu}=(\mu_1,\ldots,\mu_M)$ with equal bin widths,

$$S(\boldsymbol{\mu}) = -\sum_{i=1}^{M-1} (\mu_i - \mu_{i+1})^2.$$
 (11.2)

Find the $M \times M$ matrix G such that $S(\mu)$ can be expressed in the form

$$S(\boldsymbol{\mu}) = -\sum_{i,j=1}^{M} G_{ij} \mu_i \mu_j = -\boldsymbol{\mu}^T G \boldsymbol{\mu}. \tag{11.3}$$

Exercise 11.3: Consider a histogram of expectation values $\boldsymbol{\mu} = (\mu_1, \dots, \mu_M)$ and the corresponding probabilities $\mathbf{p} = \boldsymbol{\mu}/\mu_{\text{tot}}$, where $\mu_{\text{tot}} = \sum_{i=1}^{M} \mu_i$.

(a) Show that the Shannon entropy,

$$H(\mathbf{p}) = -\sum_{i=1}^{M} p_i \log p_i, \tag{11.4}$$

is maximum when $p_i=1/M$ for all i. (Use a Lagrange multiplier to impose the constraint $\sum_{i=1}^M p_i=1$.)

(b) Show that the cross-entropy,

$$K(\mathbf{p}; \mathbf{q}) = -\sum_{i=1}^{M} p_i \log \frac{p_i}{Mq_i},$$
(11.5)

is maximum when the probabilities \mathbf{p} are equal to the reference distribution \mathbf{q} .

Exercise 11.4: Consider an observed histogram $\mathbf{n} = (n_1, \dots, n_N)$, for which the corresponding expectation values $\boldsymbol{\nu} = (\nu_1, \dots, \nu_N)$ are related to a true histogram of expectation values $\boldsymbol{\mu} = (\mu_1, \dots, \mu_M)$ by $\boldsymbol{\nu} = R\boldsymbol{\mu}$. Assume that the covariance matrix V and response matrix R are known and that the histograms contain no background.

(a) Construct estimators for μ by maximizing

$$\Phi(\boldsymbol{\mu}) = -\frac{\alpha}{2} \chi^2(\boldsymbol{\mu}) + S(\boldsymbol{\mu})$$

$$= -\frac{\alpha}{2} (\mathbf{n} - R\boldsymbol{\mu})^T V^{-1} (\mathbf{n} - R\boldsymbol{\mu}) - \boldsymbol{\mu}^T G \boldsymbol{\mu}, \qquad (11.6)$$

where α is the regularization parameter and the $M \times M$ symmetric matrix G is given by a known set of constants (cf. SDA Section 11.5.1). Show that the estimators $\hat{\mu}$ are given by

$$\hat{\boldsymbol{\mu}} = (\alpha R^T V^{-1} R + 2G)^{-1} \alpha R^T V^{-1} \mathbf{n}, \qquad (11.7)$$

and find the covariance matrix $U_{ij} = \text{cov}[\hat{\mu}_i, \hat{\mu}_j]$.

(b) Now impose the constraint that $\nu_{\text{tot}} = \sum_{i=1}^{N} \nu_i = \sum_{i=1}^{N} \sum_{j=1}^{M} R_{ij} \mu_j$ be equal to the total observed number of events $n_{\text{tot}} = \sum_{i=1}^{N} n_i$. The solution is found by maximizing

$$\varphi(\boldsymbol{\mu}) = -\frac{\alpha}{2} (\mathbf{n} - R\boldsymbol{\mu})^T V^{-1} (\mathbf{n} - R\boldsymbol{\mu}) - \boldsymbol{\mu}^T G \boldsymbol{\mu} + \lambda (n_{\text{tot}} - \nu_{\text{tot}})$$
(11.8)

with respect to the parameters μ and the Lagrange multiplier λ . Find the estimators $\hat{\mu}$ and their covariance matrix.

(c) Construct estimators $\hat{\mathbf{b}}$ for the bias $\mathbf{b} = E[\hat{\boldsymbol{\mu}}] - \boldsymbol{\mu}$ using SDA equation (11.76) for both cases (a) and (b).