
Chapter 6

The Method of Maximum Likelihood

Exercise 6.1: (a) Find the maximum-likelihood estimators for the mean µ and variance σ2 of
a Gaussian p.d.f. based on a sample of n observations, x1, . . . , xn.

(b) Find the expectation values and variances of the estimators by relating µ̂ and σ̂2 to the
estimators x and s2 given in SDA Chapter 2.

(c) Find the approximate inverse covariance matrix (valid for large samples) by computing

(V −1)ij = −E

[
∂2 logL

∂θiθj

]

, (6.1)

where θi and θj (i, j = 1, 2) represent µ and σ2. Invert V −1 to find the covariance matrix, and
compare the diagonal elements (i.e. the variances) to the exact values found in (b). Note that
the answers from (b) and (c) agree in the large sample limit.

Exercise 6.2: Consider a binomially distributed variable n, the number of successes observed in
N trials, where the probability of success in a single trial is p. What is the maximum-likelihood
estimator for p given a single observation of n? Show that p̂ is unbiased and find its variance.
Show that the variance of p̂ is equal to the minimum variance bound (see SDA equation (6.16)).

Exercise 6.3: (a) Consider again a binomial variable with probabilities p and q = 1− p for the
outcomes of each trial. Using the estimator for p from Exercise 6.2, construct the ML estimator
α̂ for the asymmetry

α = p− q = 2p− 1 , (6.2)

and find its standard deviation σα̂.

(b) Suppose that one is trying to measure a very small asymmetry, expected to be at the level
of α ≈ 10−3. How many trials is it necessary to observe in order to have the standard deviation
σα̂ at least a factor of three smaller than this?

Exercise 6.4: Consider a single observation of a Poisson distributed variable n. What is the
maximum-likelihood estimator of the mean ν? Show that the estimator is unbiased and find its
variance. Show that the variance of ν̂ is equal to the minimum variance bound.
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Exercise 6.5: Early evidence supporting the Standard Model of particle physics was provided by
the observation of a difference in the cross sections σR and σL for inelastic scattering of right (R)
or left (L) hand polarized electrons on a deuterium target. For a given integrated luminosity L
(proportional to the electron beam intensity and time of data taking), the numbers of scattering
events of each type are Poisson variables, nR and nL, with means νR and νL. The means are
related to the cross sections by νR = σRL and νL = σLL, and the experiment is set up such
that the luminosity L is equal for both cases. Using the result from Exercise 6.4, construct an
estimator α̂ for the polarization asymmetry,

α =
σR − σL
σR + σL

. (6.3)

Using error propagation, find the standard deviation σα̂ as a function of α and νtot = νR + νL.
Compare this to the corresponding quantity from Exercise 6.3. The asymmetry was expected
to be at the level of 10−4. How many scattering events must be observed so that σα̂ is a factor
of ten smaller than this? (The number of is so large that the events could not be recorded
individually, but rather the output current of the detector was measured. See C.Y. Prescott et
al., Parity non-conservation in inelastic electron scattering, Phys. Lett. B77 (1978) 347.)

Exercise 6.6: A random variable x follows a p.d.f. f(x; θ) where θ is an unknown parameter.
Consider a sample x = (x1, . . . , xn) used to construct an estimator θ̂(x) for θ (not necessarily
the ML estimator). Prove the Rao-Cramér-Frechet (RCF) inequality,

V [θ̂] ≥

(
1 + ∂b

∂θ

)2

−E
[
∂2 logL
∂θ2

] , (6.4)

where b = E[θ̂]− θ is the bias of the estimator. This will require several steps:

(a) First, prove the Cauchy–Schwarz inequality, which states that for any two random variables
u and v,

V [u]V [v] ≥ (cov[u, v])2, (6.5)

where V [u] and V [v] are the variances and cov[u, v] the covariance. Use that fact that the
variance of αu+ v must be greater than or equal to zero for any value of α. Then consider the
special case α = (V [v]/V [u])1/2.

(b) Use the Cauchy–Schwarz inequality with

u = θ̂,

v =
∂

∂θ
logL,

(6.6)

where L = fjoint(x; θ) is the likelihood function, which is also the joint p.d.f. for x. Write (6.5)

so as to express a lower bound on V [θ̂]. Note that here we are treating the likelihood function
as a function of x, i.e. it is regarded as a random variable.
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(c) Assume that differentiation with respect to θ can be brought outside the integral to show
that

E
[
∂

∂θ
logL

]
=

∫
. . .

∫
fjoint(x; θ)

∂

∂θ
log fjoint(x; θ) dx1 . . . dxn = 0. (6.7)

The form of the RCF inequality that we will derive depends on this assumption, which is true
in most cases of interest. (It is fulfilled as long as the limits of integration do not depend on θ.)
Use (6.7) with (6.5) and (6.6) to show that

V [θ̂] ≥

(
E

[
θ̂ ∂ logL

∂θ

])2

E
[(

∂ logL
∂θ

)2] . (6.8)

(d) Show that the numerator of (6.8) can be expressed as

E
[
θ̂
∂ logL

∂θ

]
= 1 +

∂b

∂θ
, (6.9)

and that in a similar way the denominator is

E

[(
∂ logL

∂θ

)2
]

= −E

[
∂2 logL

∂θ2

]

. (6.10)

Again assume that the order of differentiation with respect to θ and integration over x can be
reversed. Prove (6.4) by putting together the ingredients from (c) and (d).

Exercise 6.7: Write a computer program to generate samples of n values t1, . . . , tn according
to an exponential distribution

f(t; τ) =
1

τ
e−t/τ , t ≥ 0 . (6.11)

(a) Show that the ML estimator for τ is given by the sample mean τ̂ = 1
n

∑n
i=1 ti. Generate

1000 samples with τ = 1 and n = 10. Evaluate τ̂ for each sample, and make a histogram of the
results. Compare the mean of the τ̂ values with the true value τ = 1.

(b) Suppose the p.d.f. for t had been parametrized in terms of λ = 1/τ , i.e.

f(t;λ) = λ e−λt , t ≥ 0 . (6.12)

Show that the ML estimator for λ is λ̂ = 1/
∑n

i=1 ti. Modify the program in (a) to include a
histogram of the estimates λ̂ from the Monte Carlo experiments. Compare the mean value of λ̂
to the true value λ = 1. Determine numerically the bias b = E[λ̂]− λ for n = 5, 10, 100.

Exercise 6.8: The license plates of taxis in Geneva are numbered from one up to the total
number Ntaxi. N observations of taxi licenses are made yielding numbers n1, . . . nN .

(a) Construct the maximum-likelihood estimator for the total number of taxis. (This is a well-
known example where the ML estimator is biased and not efficient. The difficulty stems from
the fact that the range of possible data values depends on the parameter.)
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(b) Propose a better estimator for the number of taxis. Give its expectation value and variance.

Exercise 6.9: Consider N independent Poisson variables n1, . . . , nN , with mean values
ν1, . . . , νN . Suppose the mean values are related to a controlled variable x according to relation
of the form,

ν(x) = θa(x), (6.13)

where θ is an unknown parameter and a(x) is an arbitrary known function. The N values of νi
are thus given by ν(xi) = θa(xi), where the values x1, . . . , xN are assumed to be known. Show
that the ML estimator for θ is given by

θ̂ =

∑N
i=1 ni∑N

i=1 a(xi)
. (6.14)

Show that θ̂ is unbiased and that its variance is given by the minimum variance bound (cf.
Exercise 6.6).

Exercise 6.10: An example of the situation described in Exercise 6.7 is provided by
(anti)neutrino-nucleon scattering. According to the quark-parton model, the cross sections for
the reactions νN → µ−X and νN → µ+X are given by

σ(νN → µ−X) =
G2ME

π

(
〈q〉+

1

3
〈q〉

)
≡ θνE

σ(νN → µ+X) =
G2ME

π

(
1

3
〈q〉+ 〈q〉

)
≡ θνE,

(6.15)

where E is the energy of the incoming (anti)neutrino, M = 0.938 GeV is the mass of the target
nucleon and G = 1.16× 10−6 GeV−2 is the Fermi constant. Here the variable x corresponds to
the energy E, and the parameters on the right-hand sides of (6.15) correspond to two different
parameters, θν and θν .

Suppose data are collected N different values of E. At each energy, the expected number of
events is given by

νi = σ(Ei) ε(Ei)Li, (6.16)

where σ(Ei) is the anti(neutrino) cross section at energy Ei, Li is the integrated luminosity, and
ε(Ei) is the probability for the detector to register the event (the efficiency), which is in general
a function of the energy. For purposes of this exercises, we will assume that the energies Ei and
corresponding integrated luminosities Li and efficiencies εi ≡ ε(Ei) are known without error.
(Assume in addition that there are no background events.)

Determine the ML estimators for the parameters θν and θν , and from them find estimators
for 〈q〉 and 〈q〉. In the context of the quark-parton model, these correspond to the fraction
of the nucleon’s momentum carried by quarks and antiquarks, respectively. Determine the
fraction of the momentum carried by particles other than quarks and antiquarks (i.e. gluons),
〈g〉 = 1− 〈q〉 − 〈q〉.
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Exercise 6.11: One of the earliest determinations of Avogadro’s number was based on Brownian
motion. The experimental set-up shown in Fig. 6.1 was used by Jean Perrin 1 to observe particles
of mastic (a substance used in varnish) suspended in water.

z

lens

focal plane
of lens

cover
emulsion

Figure 6.1: Experimental set-up
of Jean Perrin for observing the
number of particles suspended in
water as a function of height.

The particles were spheres of radius r = 0.52 µm and had a density of 1.063 g/cm3, i.e. 0.063
g/cm3 greater than that of water. By viewing the particles through the microscope, only those
in a layer approximately 1 µm thick were in focus; particles outside this layer were not visible.
By adjusting the microscope lens, the focal plane could be moved vertically. Photographs were
taken at 4 different heights z, (the lowest height is arbitrarily assigned a value z = 0) and the
number of particles n(z) counted. The data are shown in Table 6.1.

Table 6.1: Perrin’s data on the number of mastic particles observed at different heights z in an emulsion.

height z (µm) number of particles n
0 1880
6 940
12 530
18 305

The gravitational potential energy of a spherical particle of mastic in water is given by

E =
4

3
πr3∆ρ gz, (6.17)

where ∆ρ = ρmastic − ρwater = 0.063 g/cm3 is the difference in densities and g = 980 cm/s2 is
the acceleration of gravity. Statistical mechanics predicts that the probability for a particle to
be in a state of energy E is proportional to

P (E) ∝ e−E/kT , (6.18)

where k is Boltzmann’s constant and T the absolute temperature. The particles should therefore
be distributed in height according to an exponential law, where the number n observed at z can
be treated as a Poisson variable with a mean ν(z). By combining (6.17) and (6.18), this is found
to be

1Jean Perrin, Mouvement brownien et réalité moléculaire, Ann. Chimie et Physique, 8e série, 18 (1909) 1-114;
Les Atomes, Flammarion, Paris, 1991 (first edition, 1913); Brownian Movement and Molecular Reality, in Mary-Jo
Nye, ed., The Question of the Atom, Tomash, Los Angeles, 1984.
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ν(z) = ν0 exp

(

−
4πr3∆ρ gz

3kT

)

, (6.19)

where ν0 is the expected number of particles at z = 0.

(a) Write a computer program to determine the parameters k and ν0 with the method of
maximum likelihood. Use the data given in Table 6.1 to construct the log-likelihood function
based on Poisson probabilities (cf. SDA Section 6.10),

logL(ν0, k) =
N∑

i=1

(ni log νi − νi), (6.20)

where N = 4 is the number of measurements. For the temperature use T = 293 K.

(b) From the value you obtain for k, determine Avogadro’s number using the relation

NA = R/k, (6.21)

where R is the gas constant. The value used by Perrin was R = 8.32× 107 erg/mol K.

(c) Instead of maximizing the log-likelihood function (6.20), estimate ν0 and k by minimizing

χ2
P(ν0, k) = 2

N∑

i=1

(
ni log

ni

νi
+ νi − ni

)
, (6.22)

where νi = ν(zi) depends on ν0 and k through equation (6.19). Use the value of χ2
P to evaluate

the goodness-of-fit (cf. SDA Section 6.11). Comment on possible systematic errors in Perrin’s
determination of NA.


