
Computing and Statistical Data Analysis
(PH4515, UofL PG Lectures)

Glen Cowan
Physics Department
Royal Holloway, University of London
Egham, Surrey TW20 0EX

01784 443452
g.cowan@rhul.ac.uk
www.pp.rhul.ac.uk/~cowan/stat_course.html

G. Cowan / RHUL 1 Computing and Statistical Data Analysis / Comp 1

Computing and Statistical Data Analysis:
C++ Outline

 1 Introduction to C++ and UNIX environment
 2 Variables, types, expressions, loops
 3 Type casting, functions
 4 Files and streams
 5 Arrays, strings, pointers
 6 Classes, intro to Object Oriented Programming
 7 Memory allocation, operator overloading, templates
 8 Inheritance, STL, gmake, ddd

G. Cowan / RHUL 2 Computing and Statistical Data Analysis / Comp 1

Some resources (computing part)
There are many web based resources, e.g.,

 www.doc.ic.ac.uk/~wjk/C++Intro (Rob Miller, IC course)

 www.cplusplus.com (online reference)

 www.icce.rug.nl/documents/cplusplus (F. Brokken)

See links on course site or google for “C++ tutorial”, etc.

There are thousands of books – see e.g.

 W. Savitch, Problem Solving with C++, 4th edition
 (lots of detail – very thick).
 B. Stroustrup, The C++ Programming Language
 (the classic – even thicker).
 Lippman, Lajoie (& Moo), C++ Primer, A-W, 1998.

G. Cowan / RHUL 3 Computing and Statistical Data Analysis / Comp 1

We will learn C++ using the Linux operating system
 Open source, quasi-free version of UNIX

UNIX and C developed ~1970 at Bell Labs
 Short, cryptic commands: cd, ls, grep, …

Other operating systems in 1970s, 80s ‘better’, (e.g. VMS)
but, fast ‘RISC processors’ in early 1990s needed a cheap
solution → we got UNIX

In 1991, Linus Torvalds writes a free, open source version
of UNIX called Linux.

 We currently use the distribution from CERN

Introduction to UNIX/Linux

G. Cowan / RHUL 4 Computing and Statistical Data Analysis / Comp 1

Basic UNIX
UNIX tasks divide neatly into:
 interaction between operating system and computer (the kernel),
 interaction between operating system and user (the shell).

Several shells (i.e. command sets) available: sh, csh, tcsh, bash, …

Shell commands typed at a prompt, here [linappserv0]~>
often set to indicate name of computer:

Command pwd to “print working
directory”, i.e., show the directory
(folder) you’re sitting in.

Commands are case sensitive.

 PWD will not work .

G. Cowan / RHUL 5 Computing and Statistical Data Analysis / Comp 1

UNIX file structure
Tree-like structure for files and directories (like folders):

/ ← the ‘root’ directory

usr/ bin/ home/ sys/ tmp/ ...

smith/ jones/ jackson/ ...

WWW/ code/ thesis/ ...

File/directory names are case sensitive: thesis ≠ Thesis

G. Cowan / RHUL 6 Computing and Statistical Data Analysis / Comp 1

Simple UNIX file tricks
A complete file name specifies the entire ‘path’

 /home/jones/thesis/chapter1.tex

A tilde points to the home directory:

 ~/thesis/chapter1.tex ← the logged in user (e.g. jones)

 ~smith/analysis/result.dat ← a different user

Single dot points to current directory, two dots for the one above:

 /home/jones/thesis ← current directory

 ../code ← same as /home/jones/code

G. Cowan / RHUL 7 Computing and Statistical Data Analysis / Comp 1

A few UNIX commands (case sensitive!)
pwd Show present working directory
ls List files in present working directory
ls -la List files of present working directory with details
man ls Show manual page for ls. Works for all commands.
man -k keyword Searches man pages for info on “keyword”.
cd Change present working directory to home directory.
mkdir foo Create subdirectory foo
cd foo Change to subdirectory foo (go down in tree)
cd .. Go up one directory in tree
rmdir foo Remove subdirectory foo (must be empty)
emacs foo & Edit file foo with emacs (& to run in background)
more foo Display file foo (space for next page)
less foo Similar to more foo, but able to back up (q to quit)
rm foo Delete file foo

G. Cowan / RHUL 8 Computing and Statistical Data Analysis / Comp 1

A few more UNIX commands
cp foo bar Copy file foo to file bar, e.g., cp ~smith/foo ./

 copies Smith’s file foo to my current directory
mv foo bar Rename file foo to bar
lpr foo Print file foo. Use -P to specify print queue, e.g.,

 lpr -Plj1 foo (site dependent).
ps Show existing processes
kill 345 Kill process 345 (kill -9 as last resort)
./foo Run executable program foo in current directory
ctrl-c Terminate currently executing program
chmod ug+x foo Change access mode so user and group have

 privilege to execute foo (Check with ls -la)

Better to read a book or online tutorial and use man pages

G. Cowan / RHUL 9 Computing and Statistical Data Analysis / Comp 1

UNIX file access

Three groups of letters refer to: user (u), group (g) and other (o).
The possible permissions are read (r), write (w), execute (x).
By default, everyone in your group will have read access to all
of your files. To change this, use chmod, e.g.
 chmod go-rwx hgg
prevents group and other from seeing the directory hgg.

If you type ls –la, you will see that each file and directory
is characterized by a set of file access rights:

G. Cowan / RHUL 10 Computing and Statistical Data Analysis / Comp 1

Introduction to C++
Language C developed (from B) ~ 1970 at Bell Labs

 Used to create parts of UNIX

C++ derived from C in early 1980s by Bjarne Stroustrup
 “C with classes”, i.e., user-defined data types that
 allow “Object Oriented Programming”.

Java syntax based largely on C++ (head start if you know java)

 C++ is case sensitive (a not same as A).

Currently most widely used programming language in High
Energy Physics and many other science/engineering fields.

 Recent switch after four decades of FORTRAN.

G. Cowan / RHUL 11 Computing and Statistical Data Analysis / Comp 1

Compiling and running a simple C++ program

// My first C++ program
#include <iostream>
using namespace std;
int main(){
 cout << "Hello World!" << endl;
 return 0;
}

Using,e.g., emacs, create a file HelloWorld.cc containing:

We now need to compile the file (creates machine-readable code):

 g++ -o HelloWorld HelloWorld.cc

Invokes compiler (gcc) name of output file source code

Run the program: ./HelloWorld ← you type this
Hello World! ← computer shows this

G. Cowan / RHUL 12 Computing and Statistical Data Analysis / Comp 1

Notes on compiling/linking
g++ -o HelloWorld HelloWorld.cc

is an abbreviated way of saying first

g++ -c HelloWorld.cc

Compiler (-c) produces HelloWorld.o. (‘object files’)
Then ‘link’ the object file(s) with
g++ -o HelloWorld HelloWorld.o

If the program contains more than one source file, list with
spaces; use \ to continue to a new line:

g++ -o HelloWorld HelloWorld.cc Bonjour.cc \
GruessGott.cc YoDude.cc

G. Cowan / RHUL 13 Computing and Statistical Data Analysis / Comp 1

Writing programs in the Real World
Usually create a new directory for each new program.

For trivial programs, type compile commands by hand.

For less trivial but still small projects, create a file (a ‘script’) to
contain the commands needed to build the program:

#!/bin/sh
File build.sh to build HelloWorld
g++ -o HelloWorld HelloWorld.cc Bonjour.cc \
GruessGott.cc YoDude.cc

To use, must first have ‘execute access’ for the file:

 chmod ug+x build.sh ← do this only once
 ./build.sh ← executes the script

G. Cowan / RHUL 14 Computing and Statistical Data Analysis / Comp 1

A closer look at HelloWorld.cc
// My first C++ program is a comment (preferred style)

The older ‘C style’ comments are also allowed (cannot be nested):
/*
 These lines
 here are comments
*/

/* and so are these */

You should include enough comments in your code to make it
understandable by someone else (or by yourself, later).

Each file should start with comments indicating author’s name,
main purpose of the code, required input, etc.

G. Cowan / RHUL 15 Computing and Statistical Data Analysis / Comp 1

More HelloWorld.cc − include statements
#include <iostream> is a compiler directive.

Compiler directives start with #. These statements are not executed
at run time but rather provide information to the compiler.

#include <iostream> tells the compiler that the code will use
library routines whose definitions can be found in a file called
iostream, usually located somewhere under /usr/include

Old style was #include <iostream.h>

iostream contains functions that perform i/o operations to
communicate with keyboard and monitor.

In this case, we are using the iostream object cout to send text
to the monitor. We will include it in almost all programs.

G. Cowan / RHUL 16 Computing and Statistical Data Analysis / Comp 1

More HelloWorld.cc
using namespace std; More later. For now, just do it.
A C++ program is made up of functions. Every program contains
exactly one function called main:

int main(){
 // body of program goes here

 return 0;
}

Functions “return” a value of a given type; main returns int (integer).

The () are for arguments. Here main takes no arguments.

The body of a function is enclosed in curly braces: { }

return 0; means main returns a value of 0.

G. Cowan / RHUL 17 Computing and Statistical Data Analysis / Comp 1

Finishing up HelloWorld.cc
The ‘meat’ of HelloWorld is contained in the line

 cout << "Hello World!" << endl;

Like all statements, it ends with a semi-colon.

cout is an “output stream object”.

You send strings (sequences of characters) to cout with <<

We will see it also works for numerical quantities (automatic
conversion to strings), e.g., cout << "x = " << x << endl;

Sending endl to cout indicates a new line. (Try omitting this.)

Old style was "Hello World!\n"

G. Cowan / RHUL 18 Computing and Statistical Data Analysis / Comp 1

C++ building blocks

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 19

All of the words in a C++ program are either:

 Reserved words: cannot be changed, e.g.,
 if, else, int, double, for, while, class, ...

 Library identifiers: default meanings usually not
 changed, e.g., cout, sqrt (square root), ...

 Programmer-supplied identifiers:
 e.g. variables created by the programmer,
 x, y, probeTemperature, photonEnergy, ...

Valid identifier must begin with a letter or underscore (“_”) , and
can consist of letters, digits, and underscores.

Try to use meaningful variable names; suggest lowerCamelCase.

Data types

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 20

Data values can be stored in variables of several types.
Think of the variable as a small blackboard, and we have
different types of blackboards for integers, reals, etc.
The variable name is a label for the blackboard.

Basic floating point types (i.e., for real numbers):
 float usually 32 bits
 double usually 64 bits ← best for our purposes

Basic integer type: int (also short, unsigned, long int, ...)
 Number of bits used depends on compiler; typically 32 bits.

Boolean: bool (equal to true or false)

Character: char (single ASCII character only, can be blank),
 no native ‘string’ type; more on C++ strings later.!

Declaring variables

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 21

All variables must be declared before use.
 Usually declare just before 1st use.

Examples
int main(){
 int numPhotons; // Use int to count things
 double photonEnergy; // Use double for reals
 bool goodEvent; // Use bool for true or false
 int minNum, maxNum; // More than one on line
 int n = 17; // Can initialize value
 double x = 37.2; // when variable declared.
 char yesOrNo = ‘y’; // Value of char in ‘ ‘

 ...
}

Assignment of values to variables

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 22

Declaring a variable establishes its name; value is undefined
(unless done together with declaration).

Value is assigned using = (the assignment operator):!

int main(){
 bool aOK = true; // true, false predefined constants
 double x, y, z;
 x = 3.7;
 y = 5.2;
 z = x + y;
 cout << "z = " << z << endl;
 z = z + 2.8; // N.B. not like usual equation
 cout << "now z = " << z << endl;
 ...
}

Constants

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 23

Sometimes we want to ensure the value of a variable doesn’t change.

 Useful to keep parameters of a problem in an easy
 to find place, where they are easy to modify.

 Use keyword const in declaration:

const int numChannels = 12;
const double PI = 3.14159265;

// Attempted redefinition by Indiana State Legislature
PI = 3.2; // ERROR will not compile

Old C style retained for compatibility (avoid this):
#define PI 3.14159265

Enumerations

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 24

Sometimes we want to assign numerical values to words, e.g.,

 January = 1, February = 2, etc.

Use an ‘enumeration’ with keyword enum
 enum { RED, GREEN, BLUE };

is shorthand for
!const int RED = 0;
 const int GREEN = 1;
 const int BLUE = 2;

Enumeration starts by default with zero; can override:
 enum { RED = 1, GREEN = 3, BLUE = 7 }

(If not assigned explicitly, value is one greater than previous.)

Expressions

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 25

C++ has obvious(?) notation for mathematical expressions:

 operation symbol

 addition +
 subtraction -
 multiplication *
 division /
 modulus %

Note division of int values is truncated:
 int n, m; n = 5; m = 3;
 int ratio = n/m; // ratio has value of 1

Modulus gives remainder of integer division:

 int nModM = n%m; // nModM has value 2

Operator precedence

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 26

* and / have precedence over + and -, i.e.,

 x*y + u/v means (x*y) + (u/v)

* and / have same precedence, carry out left to right:

 x/y/u*v means ((x/y) / u) * v

Similar for + and -

 x - y + z means (x - y) + z

Many more rules (google for C++ operator precedence).

Easy to forget the details, so use parentheses unless it’s obvious.

Boolean expressions and operators

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 27

Boolean expressions are either true or false, e.g.,
 int n, m; n = 5; m = 3;
 bool b = n < m; // value of b is false

C++ notation for boolean expressions:
 greater than >
 greater than or equals >=
 less than <
 less than or equals <=
 equals ==
 not equals !=

Can be combined with && (“and”), || (“or”) and ! (“not”), e.g.,
 (n < m) && (n != 0) (false)
 (n%m >= 5) || !(n == m) (true)

not =

Precedence of operations not obvious; if in doubt use parentheses.!

Shorthand assignment statements

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 28

 full statement shorthand equivalent

 n = n + m n += m
 n = n - m n -= m
 n = n * m n *= m
 n = n / m n /= m

 n = n % m n %= m

 full statement shorthand equivalent

 n = n + 1 n++ (or ++n)!
 n = n - 1 n-- (or --n)

Special case of increment or decrement by one:

++ or -- before variable means first increment (or decrement),
then carry out other operations in the statement (more later).

Getting input from the keyboard

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 29

Sometimes we want to type in a value from the keyboard and
assign this value to a variable. For this use the iostream object cin:

 int age;
 cout << "Enter your age" << endl;
 cin >> age;
 cout << "Your age is " << age << endl;

When you run the program you see
 Enter your age
!23 ← you type this, then “Enter”
 Your age is 23

(Why is there no “jin” in java? What were they thinking???)!

if and else

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 30

Simple flow control is done with if and else:!
!if (boolean test expression){
 Statements executed if test expression true
 }

or
!if (expression1){
 Statements executed if expression1 true
 }
 else if (expression2) {
 Statements executed if expression1 false
 and expression2 true
 }
 else {
 Statements executed if both expression1 and
 expression2 false
 }

more on if and else

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 31

Note indentation and placement of curly braces:!
!if (x > y){
 x = 0.5*x;
 }

Some people prefer

!if (x > y)
 {
 x = 0.5*x;
 }

If only a single statement is to be executed, you can omit the
curly braces -- this is usually a bad idea:

 if (x > y) x = 0.5*x;

Putting it together -- checkArea.cc

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 32

!#include <iostream>
 using namespace std;
 int main() {
 const double maxArea = 20.0;
 double width, height;
 cout << "Enter width" << endl;
 cin >> width;
 cout << "Enter height" << endl;
 cin >> height;
 double area = width*height;
 if (area > maxArea){
 cout << "Area too large" << endl;
 else {
 cout << "Dimensions are OK" << endl;
 }
 return 0;
 }

“while” loops
A while loop allows a set of statements to be repeated as long as
a particular condition is true:

while(boolean expression){
 // statements to be executed as long as
 // boolean expression is true

}

while (x < xMax){
 x += y;
 ...
}

For this to be useful, the boolean expression must be updated
upon each pass through the loop:

Possible that statements never executed, or that loop is infinite.

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 33

“do-while” loops
A do-while loop is similar to a while loop, but always executes
at least once, then continues as long as the specified condition is
true.

do {
 // statements to be executed first time
 // through loop and then as long as
 // boolean expression is true

} while (boolean expression)

Can be useful if first pass needed to initialize the boolean
expression.

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 34

“for” loops
A for loop allows a set of statements to be repeated a fixed
number of times. The general form is:

for (initialization action ;
 boolean expression ; update action){
 // statements to be executed

}

for (int i=0; i<n; i++){
 // statements to be executed n times

}

Often this will take on the form:

Note that here i is defined only inside the { }.

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 35

Examples of loops

int sum = 0;
for (int i = 1; i<=n; i++){
 sum += i;
}
cout << "sum of integers from 1 to " << n <<
 " is " << sum << endl;

A do-while loop:
int n;
bool gotValidInput = false;
do {
 cout << "Enter a positive integer" << endl;
 cin >> n;
 gotValidInput = n > 0;
} while (!gotValidInput);

A for loop:

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 36

Nested loops

// loop over pixels in an image

for (int row=1; row<=nRows; row++){
 for (int column=1; column<=nColumns; column++){
 int b = imageBrightness(row, column);
 ...

 } // loop over columns ends here
} // loop over rows ends here

Loops (as well as if-else structures, etc.) can be nested, i.e.,
you can put one inside another:

We can put any kind of loop into any other kind, e.g., while
loops inside for loops, vice versa, etc.

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 37

More control of loops
continue causes a single iteration of loop to be skipped
(jumps back to start of loop).

while (processEvent) {

 if (eventSize > maxSize) { continue; }

 if (numEventsDone > maxEventsDone) {
 break;
 }

// rest of statements in loop ...

}

break causes exit from entire loop (only innermost one if
inside nested loops).

Usually best to avoid continue or break by use of if statements.

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 1 38

