
Computing and Statistical Data Analysis
Comp 2

Glen Cowan
Physics Department
Royal Holloway, University of London
Egham, Surrey TW20 0EX

01784 443452
g.cowan@rhul.ac.uk
www.pp.rhul.ac.uk/~cowan/stat_course.html

G. Cowan / RHUL 1 Computing and Statistical Data Analysis / Comp 2

Shorthand assignment statements

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 2 2

 full statement shorthand equivalent

 n = n + m n += m
 n = n - m n -= m
 n = n * m n *= m
 n = n / m n /= m

 n = n % m n %= m

 full statement shorthand equivalent

 n = n + 1 n++ (or ++n)!
 n = n - 1 n-- (or --n)

Special case of increment or decrement by one:

++ or -- before variable means first increment (or decrement),
then carry out other operations in the statement (more later).

Getting input from the keyboard

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 2 3

Sometimes we want to type in a value from the keyboard and
assign this value to a variable. For this use the iostream object cin:

 int age;
 cout << "Enter your age" << endl;
 cin >> age;
 cout << "Your age is " << age << endl;

When you run the program you see
 Enter your age
!23 ← you type this, then “Enter”
 Your age is 23

(Why is there no “jin” in java? What were they thinking???)!

if and else

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 2 4

Simple flow control is done with if and else:!
!if (boolean test expression){
 Statements executed if test expression true
 }

or
!if (expression1){
 Statements executed if expression1 true
 }
 else if (expression2) {
 Statements executed if expression1 false
 and expression2 true
 }
 else {
 Statements executed if both expression1 and
 expression2 false
 }

more on if and else

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 2 5

Note indentation and placement of curly braces:!
!if (x > y){
 x = 0.5*x;
 }

Some people prefer

!if (x > y)
 {
 x = 0.5*x;
 }

If only a single statement is to be executed, you can omit the
curly braces -- this is usually a bad idea:

 if (x > y) x = 0.5*x;

Putting it together -- checkArea.cc

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 2 6

!#include <iostream>
 using namespace std;
 int main() {
 const double maxArea = 20.0;
 double width, height;
 cout << "Enter width" << endl;
 cin >> width;
 cout << "Enter height" << endl;
 cin >> height;
 double area = width*height;
 if (area > maxArea){
 cout << "Area too large" << endl;
 else {
 cout << "Dimensions are OK" << endl;
 }
 return 0;
 }

“while” loops
A while loop allows a set of statements to be repeated as long as
a particular condition is true:

while(boolean expression){
 // statements to be executed as long as
 // boolean expression is true

}

while (x < xMax){
 x += y;
 ...
}

For this to be useful, the boolean expression must be updated
upon each pass through the loop:

Possible that statements never executed, or that loop is infinite.

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 2 7

“do-while” loops
A do-while loop is similar to a while loop, but always executes
at least once, then continues as long as the specified condition is
true.

do {
 // statements to be executed first time
 // through loop and then as long as
 // boolean expression is true

} while (boolean expression)

Can be useful if first pass needed to initialize the boolean
expression.

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 2 8

“for” loops
A for loop allows a set of statements to be repeated a fixed
number of times. The general form is:

for (initialization action ;
 boolean expression ; update action){
 // statements to be executed

}

for (int i=0; i<n; i++){
 // statements to be executed n times

}

Often this will take on the form:

Note that here i is defined only inside the { }.

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 2 9

Examples of loops

int sum = 0;
for (int i = 1; i<=n; i++){
 sum += i;
}
cout << "sum of integers from 1 to " << n <<
 " is " << sum << endl;

A do-while loop:
int n;
bool gotValidInput = false;
do {
 cout << "Enter a positive integer" << endl;
 cin >> n;
 gotValidInput = n > 0;
} while (!gotValidInput);

A for loop:

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 2 10

Nested loops

// loop over pixels in an image

for (int row=1; row<=nRows; row++){
 for (int column=1; column<=nColumns; column++){
 int b = imageBrightness(row, column);
 ...

 } // loop over columns ends here
} // loop over rows ends here

Loops (as well as if-else structures, etc.) can be nested, i.e.,
you can put one inside another:

We can put any kind of loop into any other kind, e.g., while
loops inside for loops, vice versa, etc.

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 2 11

More control of loops
continue causes a single iteration of loop to be skipped
(jumps back to start of loop).

while (processEvent) {

 if (eventSize > maxSize) { continue; }

 if (numEventsDone > maxEventsDone) {
 break;
 }

// rest of statements in loop ...

}

break causes exit from entire loop (only innermost one if
inside nested loops).

Usually best to avoid continue or break by use of if statements.

G. Cowan / RHUL Computing and Statistical Data Analysis / Comp 2 12

Type casting
Often we need to interpret the value of a variable of one type
as being of a different type, e.g., we may want to carry out
floating-point division using variables of type int.

Suppose we have: int n, m; n = 5; m = 3; and we want
to know the real-valued ratio of n/m (i.e. not truncated). We
need to “type cast” n and m from int to double (or float):
double x = static_cast<double>(n) /
 static_cast<double>(m);

will give x = 1.666666...

Similarly we can use static_cast<int>(x) to turn a float
or double into an int, etc.

Will also work here with static_cast<double>(n)/m;
but static_cast<double>(n/m); gives 1.0.

G. Cowan / RHUL 13 Computing and Statistical Data Analysis / Comp 2

 Digression #1: bool vs. int
C and earlier versions of C++ did not have the type bool.
Instead, an int value of zero was interpreted as false, and any
other value as true. This still works in C++:
int num = 1;
if (num) {
 ... // condition true if num != 0

It is best to avoid this. If you want true or false, use bool.
If you want to check whether a number is zero, then use the
corresponding boolean expression:

if (num != 0) {
 ... // condition true if num != 0

G. Cowan / RHUL 14 Computing and Statistical Data Analysis / Comp 2

Digression #2: value of an assignment and == vs. =

In C++, an assignment statement has an associated value,
equal to the value assigned to the left-hand side. We may see:
int x, y;
x = y = 0;

Recall = is the assignment operator, e.g., x = 3;

 == is used in boolean expressions, e.g., if (x == 3) { ...

This says first assign 0 to y, then assign its value (0) to x.
This can lead to very confusing code. Or worse:
if (x = 0) { ... // condition always false!

Here what the author probably meant was
if (x == 0) { ...

G. Cowan / RHUL 15 Computing and Statistical Data Analysis / Comp 2

Standard mathematical functions
Simple mathematical functions are available through the
standard C library cmath (previously math.h), including:

abs acos asin atan atan2 cos cosh exp
fabs fmod log log10 pow sin sinh sqrt
tan tanh

Most of these can be used with float or double arguments;
return value is then of same type.

Raising to a power, z = xy, with z = pow(x,y) involves log and
exponentiation operations; not very efficient for z = 2, 3, etc.
Some advocate e.g. double xSquared = x*x;

To use these functions we need: #include <cmath>

Google for C++ cmath or see www.cplusplus.com for more info.

G. Cowan / RHUL 16 Computing and Statistical Data Analysis / Comp 2

A simple example
Create file testMath.cc containing:
// Simple program to illustrate cmath library
#include <iostream>
#include <cmath>
using namespace std;
int main() {

 for (int i=1; i<=10; i++){
 double x = static_cast<double>(i);
 double y = sqrt(x);
 double z = pow(x, 1./3.); // note decimal pts
 cout << x << " " << y << " " << z << endl;
 }

}

Note indentation and use of blank lines for clarity.

G. Cowan / RHUL 17 Computing and Statistical Data Analysis / Comp 2

Running testMath
Compile and link: g++ -o testMath testMath.cc

1 1 1
2 1.41421 1.25992
3 1.73205 1.44225
4 2 1.5874
...

The numbers don’t line up in neat columns -- more later.

Run the program: ./testMath

Often it is useful to save output directly to a file. Unix allows
us to redirect the output:
./testMath > outputFile.txt
Similarly, use >> to append file, >! to insist on overwriting.
These tricks work with any Unix commands, e.g., ls, grep, ...

G. Cowan / RHUL 18 Computing and Statistical Data Analysis / Comp 2

Improved i/o: formatting tricks
Often it’s convenient to control the formatting of numbers.

cout.setf(ios::fixed);
cout.precision(4);

will result in 4 places always to the right of the decimal point.
cout.setf(ios::scientific);

will give scientific notation, e.g., 3.4516e+05. To undo this,
use cout.unsetf(ios::scientific);

cout.width(15) will cause next item sent to cout to occupy
15 spaces, e.g.,

cout.width(5); cout << x;
cout.width(10); cout << y;
cout.width(10); cout << z << endl;

To use cout.width need #include <iomanip> .

G. Cowan / RHUL 19 Computing and Statistical Data Analysis / Comp 2

More formatting: printf and scanf
Much of this can be done more easily with the C function printf:

printf ("formatting info" [, arguments]);

For example, for float or double x and int i:
printf("%f %d \n", x, i);

will give a decimal notation for x and integer for i.
\n does (almost) same as endl;

Suppose we want 8 spaces for x, 3 to the right of the decimal
point, and 10 spaces for i:

printf("%8.3f %10d \n", x, i);

To use printf need #include <cstdlib> .

For more info google for printf examples, etc.
Also scanf, analogue of cin.

G. Cowan / RHUL 20 Computing and Statistical Data Analysis / Comp 2

Scope basics
The scope of a variable is that region of the program in which it
can be used.

If a block of code is enclosed in braces { }, then this delimits
the scope for variables declared inside the braces. This
includes braces used for loops and if structures:
int x = 5;
for (int i=0; i<n; i++){
 int y = i + 3;
 x = x + y;
}
cout << "x = " << x << endl; // OK
cout << "y = " << y << endl; // BUG -- y out of scope
cout << "i = " << i << endl; // BUG -- i out of scope

Variables declared outside any function, including main, have
‘global scope’. They can be used anywhere in the program.

G. Cowan / RHUL 21 Computing and Statistical Data Analysis / Comp 2

More scope

int x = 5;
{
 double x = 3.7;
 cout << "x = " << x << endl; // will print x = 3.7
}
cout << "x = " << x << endl; // will print x = 5

The meaning of a variable can be redefined in a limited ‘local
scope’:

In general try to keep the scope of variables as local as possible.
This minimizes the chance of clashes with other variables to
which you might try to assign the same name.

(This is bad style; example is only to illustrate local scope.)

G. Cowan / RHUL 22 Computing and Statistical Data Analysis / Comp 2

Namespaces
A namespace is a unique set of names (identifiers of variables,
functions, objects) and defines the context in which they are used.

E.g., variables declared outside of any function are in the global
namespace (they have global scope); and can be used anywhere.

A namespace can be defined with the namespace keyword:
 namespace aNameSpace {
 double x = 1.0;
 }

To refer to this x in some other part of the program (outside of
its local namespace), we can use

 aNameSpace::x

:: is the scope resolution operator.

G. Cowan / RHUL 23 Computing and Statistical Data Analysis / Comp 2

The std namespace
C++ provides automatically a namespace called std.

It contains all identifiers used in the standard C++ library (lots!),
including, e.g., cin, cout, endl, ...

To use, e.g., cout, endl, we can say:
using std::cout;
using std::endl;
int main(){
 cout << "Hello" << endl;
 ...

or we can omit using and say
int main(){
 std::cout << "Hello" << std::endl;
 ...

G. Cowan / RHUL 24 Computing and Statistical Data Analysis / Comp 2

using namespace std;
Or we can simply say
using namespace std;
int main(){
 cout << "Hello" << endl;
 ...

Although I do this in the lecture notes to keep them compact,
it is not a good idea in real code. The namespace std contains
thousands of identifiers and you run the risk of a name clash.

This construction can also be used with user-defined namespaces:
using namespace aNameSpace;
int main(){
 cout << x << endl; // uses aNameSpace::x
 ...

G. Cowan / RHUL 25 Computing and Statistical Data Analysis / Comp 2

Functions
Up to now we have seen the function main, as well as
mathematical functions such as sqrt and cos. We can also
define other functions, e.g.,
const double PI = 3.14159265; // global constant
double ellipseArea(double, double); // prototype
int main() {
 double a = 5;
 double b = 7;
 double area = ellipseArea(a, b);
 cout << "area = " << area << endl;
 return 0;
}

double ellipseArea(double a, double b){
 return PI*a*b;
}

G. Cowan / RHUL 26 Computing and Statistical Data Analysis / Comp 2

The usefulness of functions
Now we can ‘call’ ellipseArea whenever we need the area of
an ellipse; this is modular programming.

The user doesn’t need to know about the internal workings of
the function, only that it returns the right result.

‘Procedural abstraction’ means that the implementation details
of a function are hidden in its definition, and needn’t concern
the user of the function.

A well written function can be re-used in other parts of the
program and in other programs.

Functions allow large programs to be developed by teams
(as is true for classes, which we will see soon).

G. Cowan / RHUL 27 Computing and Statistical Data Analysis / Comp 2

Declaring functions
Before we can use a function, we need to declare it at the top of
the file (before int main()).

double ellipseArea(double, double);

This is called the ‘prototype’ of the function. It begins with
the function’s ‘return type’. The function can be used in an
expression like a variable of this type.

The prototype must also specify the types of the arguments, in
the correct sequence. Variable names are optional in the
prototype.

The specification of the types and order of the arguments is
called the function’s signature.

G. Cowan / RHUL 28 Computing and Statistical Data Analysis / Comp 2

Defining functions
The function must then be defined, i.e., we must say what it
does with its arguments and what it returns.

double ellipseArea(double a, double b){
 return PI*a*b;
}

Note the scope of a and b is local to the function ellipseArea.
We could have given them names different from the a and b in
the main program (and we often do).

The first word defines the type of value returned, here double.

Then comes a list of parameters, each preceded by its type.

Then the body of the function does the necessary computation and
finally we have the return statement followed by the
corresponding value of the function.

G. Cowan / RHUL 29 Computing and Statistical Data Analysis / Comp 2

Return type of a function

double ellipseArea(double, double);

The prototype must also indicate the return type of the function,
e.g., int, float, double, char, bool.

When calling the function, it must be used in the same manner
as an expression of the corresponding return type, e.g.,

The function’s return statement must return a value of this type.
double ellipseArea(double a, double b){
 return PI*a*b;
}

double volume = ellipseArea(a, b) * height;

G. Cowan / RHUL 30 Computing and Statistical Data Analysis / Comp 2

Return type void
The return type may be ‘void’, in which case there is no return
statement in the function (like a FORTRAN subroutine):
void showProduct(double a, double b){
 cout << "a*b = " << a*b << endl;
}

To call a function with return type void, we simply write its
name with any arguments followed by a semicolon:
showProduct(3, 7);

G. Cowan / RHUL 31 Computing and Statistical Data Analysis / Comp 2

Putting functions in separate files
Often we put functions in a separate files. The declaration of a
function goes in a ‘header file’ called, e.g., ellipseArea.h,
which contains the prototype:
#ifndef ELLIPSE_AREA_H
#define ELLIPSE_AREA_H

// function to compute area of an ellipse

double ellipseArea(double, double);

#endif

The directives #ifndef (if not defined), etc., serve to ensure that
the prototype is not included multiple times. If ELLIPSE_AREA_H
is already defined, the declaration is skipped.

G. Cowan / RHUL 32 Computing and Statistical Data Analysis / Comp 2

Putting functions in separate files, continued
Then the header file is included (note use of " " rather than < >)
in all files where the function is called:

#include <iostream>
#include "ellipseArea.h"
using namespace std;
int main() {
 double a = 5;
 double b = 7;
 double area = ellipseArea(a, b);
 cout << "area = " << area << endl;
 return 0;
}

(ellipseArea.h does not have to be included in the file
ellipseArea.cc where the function is defined.)

G. Cowan / RHUL 33 Computing and Statistical Data Analysis / Comp 2

Passing arguments by value
Consider a function that tries to change the value of an argument:
void tryToChangeArg(int x){
 x = 2*x;
}

It won’t work:
int x = 1;
tryToChangeArg(x);
cout << "now x = " << x << endl; // x still = 1

This is because the argument is passed ‘by value’. Only a copy of
the value of x is passed to the function.

In general this is a Good Thing. We don’t want arguments of
functions to have their values changed unexpectedly.
Sometimes, however, we want to return modified values of the
arguments. But a function can only return a single value.

G. Cowan / RHUL 34 Computing and Statistical Data Analysis / Comp 2

Passing arguments by reference
We can change the argument’s value passing it ‘by reference’.
To do this we include an & after the argument type in the function’s
prototype and in its definition (but no & in the function call):

void tryToChangeArg(int&); // prototype

void tryToChangeArg(int& x){ // definition
 x = 2*x;
}

int main(){
 int x = 1;
 tryToChangeArg(x);
 cout << "now x = " << x << endl; // now x = 2
}

Argument passed by reference must be a variable, e.g.,
tryToChangeArg(7); will not compile.

G. Cowan / RHUL 35 Computing and Statistical Data Analysis / Comp 2

Variable scope inside functions
Recall that the definition of a function is enclosed in braces.
Therefore all variables defined inside it are local to that function.

double pow(double x, int n){
 double y = static_cast<double>(n) * log(x);
 return exp(y);
}

...
double y = pow(3,2); // this is a different y

The variable y in the definition of pow is local. We can use the
same variable name outside this function with no effect on or
from the variable y inside pow.

G. Cowan / RHUL 36 Computing and Statistical Data Analysis / Comp 2

Inline functions
For very short functions, we can include the keyword inline in
their definition (must be in same file, before calling program):

inline double pow(double x, int n){
 double y = static_cast<double>(n) * log(x);
 return exp(y);
}

The compiler will (maybe) replace all instances of the function by
the code specified in the definition. This will run faster than
ordinary functions but results in a larger program.

Only use make very short functions inline and then only when
speed is a concern, and then only when you’ve determined that the
function is using a significant amount of time.

G. Cowan / RHUL 37 Computing and Statistical Data Analysis / Comp 2

Default arguments
Sometimes it is convenient to specify default arguments for
functions in their declaration:

double line(double x, double slope=1, double offset=0);

The function is then defined as usual:

double line(double x, double slope, double offset){
 return x*slope + offset;
}

We can then call the function with or without the defaults:
y = line (x, 3.7, 5.2); // here slope=3.7, offset=5.2
y = line (x, 3.7); // uses offset=0;
y = line (x); // uses slope=1, offset=0

G. Cowan / RHUL 38 Computing and Statistical Data Analysis / Comp 2

Function overloading
We can define versions of a function with different numbers or types
of arguments (signatures). This is called function overloading:

double cube(double);
double cube (double x){
 return x*x*x;
}

double cube(float);
double cube (float x){
 double xd = static_cast<double>(x);
 return xd*xd*xd;
}

Return type can be same or different; argument list must differ in
number of arguments or in their types.

G. Cowan / RHUL 39 Computing and Statistical Data Analysis / Comp 2

Function overloading, cont.
When we call the function, the compiler looks at the signature of
the arguments passed and figures out which version to use:

float x;
double y;
double z = cube(x); // calls cube(float) version
double z = cube(y); // calls cube(double) version

This is done e.g. in the standard math library cmath. There is a
version of sqrt that takes a float (and returns float), and another
that takes a double (and returns double).

Note it is not sufficient if functions differ only by return type -- they
must differ in their argument list to be overloaded.

Operators (+, -, etc.) can also be overloaded. More later.

G. Cowan / RHUL 40 Computing and Statistical Data Analysis / Comp 2

