
Computing and Statistical Data Analysis
Comp 4: finish pointers, intro to classes

Glen Cowan
Physics Department
Royal Holloway, University of London
Egham, Surrey TW20 0EX

01784 443452
g.cowan@rhul.ac.uk
www.pp.rhul.ac.uk/~cowan/stat_course.html

G. Cowan / RHUL 1 Computing and Statistical Data Analysis / Comp 4

Why different kinds of pointers?
Suppose we declare

int* iPtr; // type "pointer to int"
float* fPtr; // type "pointer to float"
double* dPtr; // type "pointer to double"

We need different types of pointers because in general, the
different data types (int, float, double) take up different
amounts of memory. If declare another pointer and set

int* jPtr = iPtr + 1;

then the +1 means “plus one unit of memory address for int”,
i.e., if we had int variables stored contiguously, jPtr would
point to the one just after iPtr.
But the types float, double, etc., take up different amounts of
memory, so the actual memory address increment is different.

G. Cowan / RHUL 2 Computing and Statistical Data Analysis / Comp 4

Passing pointers as arguments
When a pointer is passed as an argument, it divulges an address to
the called function, so the function can change the value stored at
that address:

void passPointer(int* iPtr){
 *iPtr += 2; // note *iPtr on left!
}

...
int i = 3;
int* iPtr = &i;
passPointer(iPtr);
cout << "i = " << i << endl; // prints i = 5
passPointer(&i); // equivalent to above
cout << "i = " << i << endl; // prints i = 7

End result same as pass-by-reference, syntax different. (Usually
pass by reference is the preferred technique.)

G. Cowan / RHUL 3 Computing and Statistical Data Analysis / Comp 4

Pointers vs. reference variables
A reference variable behaves like an alias for a regular variable.
To declare, place & after the type:

Passing a reference variable to a function is the same as
passing a normal variable by reference.

passReference(j);
cout << "i = " << i << endl; // prints i = 9

int i = 3;
int& j = i; // j is a reference variable
j = 7;
cout << "i = " << i << endl; // prints i = 7

void passReference(int& i){
 i += 2;
}

G. Cowan / RHUL 4 Computing and Statistical Data Analysis / Comp 4

What to do with pointers
You can do lots of things with pointers in C++, many of which
result in confusing code and hard-to-find bugs.

One of the main differences between Java and C++: Java doesn’t
have pointer variables (generally seen as a Good Thing).

The main usefulness of pointers for us is that they will allow
us to allocate memory (create variables) dynamically, i.e., at
run time, rather than at compile time.

One interesting use of pointers is that the name of an array is
a pointer to the zeroth element in the array, e.g.,

 double a[3] = {5, 7, 9};
 double zerothVal = *a; // has value of a[0]

G. Cowan / RHUL 5 Computing and Statistical Data Analysis / Comp 4

Strings (the old way)
A string is a sequence of characters. In C and in earlier versions of
C++, this was implemented with an array of variables of type char,
ending with the character \0 (counts as a single ‘null’ character):

char aString[] = "hello"; // inserts \0 at end

The cstring library (#include <cstring>) provides functions
to copy strings, concatenate them, find substrings, etc. E.g.

char* strcpy(char* target, const char* source);

takes as input a string source and sets the value of a string target,
equal to it. Note source is passed as const -- it can’t be changed.

You will see plenty of code with old “C-style” strings, but there is
now a better way: the string class (more on this later).

G. Cowan / RHUL 6 Computing and Statistical Data Analysis / Comp 4

Example with strcpy
#include <iostream>
#include <cstring>
using namespace std;
int main(){
 char string1[] = "hello";
 char string2[50];
 strcpy(string2, string1);
 cout << "string2: " << string2 << endl;
 return 0;
}

No need to count elements when initializing string with " ".

Also \0 is automatically inserted as last character.

Program will print: string2 = hello

G. Cowan / RHUL 7 Computing and Statistical Data Analysis / Comp 4

Classes
A class is something like a user-defined data type. The class
must be declared with a statement of the form:

class MyClassName {
 public:
 public function prototypes and
 data declarations;
 ...
 private:
 private function prototypes and
 data declarations;
 ...
};

Typically this would be in a file called MyClassName.h and the
definitions of the functions would be in MyClassName.cc.
Note the semi-colon after the closing brace.
For class names often use UpperCamelCase.

G. Cowan / RHUL 8 Computing and Statistical Data Analysis / Comp 4

A simple class: TwoVector
We might define a class to represent a two-dimensional vector:

class TwoVector {
 public:
 TwoVector();
 TwoVector(double x, double y);
 double x();
 double y();
 double r();
 double theta();
 void setX(double x);
 void setY(double y);
 void setR(double r);
 void setTheta(double theta);
 private:
 double m_x;
 double m_y;
};

G. Cowan / RHUL 9 Computing and Statistical Data Analysis / Comp 4

Class header files
The header file must be included (#include "MyClassName.h")
in other files where the class will be used.

To avoid multiple declarations, use the same trick we saw before
with function prototypes, e.g., in TwoVector.h :

#ifndef TWOVECTOR_H
#define TWOVECTOR_H

class TwoVector {
 public:
 ...
 private:
 ...
};

#endif

G. Cowan / RHUL 10 Computing and Statistical Data Analysis / Comp 4

Objects
Recall that variables are instances of a data type, e.g.,
double a; // a is a variable of type double

Similarly, objects are instances of a class, e.g.,

#include "TwoVector.h"
int main() {
 TwoVector v; // v is an object of type TwoVector

(Actually, variables are also objects in C++. Sometimes class
instances are called “class objects” -- distinction is not important.)

A class contains in general both:
 variables, called “data members” and
 functions, called “member functions” (or “methods”)

G. Cowan / RHUL 11 Computing and Statistical Data Analysis / Comp 4

Data members of a TwoVector object
The data members of a TwoVector are:

...
private:
 double m_x;
 double m_y;

Their values define the “state” of the object.

Because here they are declared private, a TwoVector object’s
values of m_x and m_y cannot be accessed directly, but only from
within the class’s member functions (more later).

The optional prefixes m_ indicate that these are data members.
Some authors use e.g. a trailing underscore. (Any valid identifier
is allowed.)

G. Cowan / RHUL 12 Computing and Statistical Data Analysis / Comp 4

The constructors of a TwoVector
The first two member functions of the TwoVector class are:

...
public:
 TwoVector();
 TwoVector(double x, double y);

These are special functions called constructors.

A constructor always has the same name as that of the class.

It is a function that is called when an object is created.

A constructor has no return type.

There can be in general different constructors with different
signatures (type and number of arguments).

G. Cowan / RHUL 13 Computing and Statistical Data Analysis / Comp 4

The constructors of a TwoVector, cont.
When we declare an object, the constructor is called which has
the matching signature, e.g.,

TwoVector u; // calls TwoVector::TwoVector()

The constructor with no arguments is called the “default
constructor”. If, however, we say

TwoVector v(1.5, 3.7);

then the version that takes two double arguments is called.

If we provide no constructors for our class, C++ automatically
gives us a default constructor.

G. Cowan / RHUL 14 Computing and Statistical Data Analysis / Comp 4

Defining the constructors of a TwoVector
In the file that defines the member functions, e.g., TwoVector.cc,
we precede each function name with the class name and :: (the
scope resolution operator). For our two constructors we have:

TwoVector::TwoVector() {
 m_x = 0;
 m_y = 0;
}
TwoVector::TwoVector(double x, double y) {
 m_x = x;
 m_y = y;
}

The constructor serves to initialize the object.
If we already have a TwoVector v and we say

TwoVector w = v;

this calls a “copy constructor” (automatically provided).

G. Cowan / RHUL 15 Computing and Statistical Data Analysis / Comp 4

The member functions of TwoVector
We call an object’s member functions with the “dot” notation:

TwoVector v(1.5, 3.7); // creates an object v
double vX = v.x();
cout << "vX = " << vX << endl; // prints vX = 1.5
...

If the class had public data members, e.g., these would also be
called with a dot. E.g. if m_x and m_y were public, we could say

double vX = v.m_x;

We usually keep the data members private, and only allow the user
of an object to access the data through the public member functions.
This is sometimes called “data hiding”.

If, e.g., we were to change the internal representation to polar
coordinates, we would need to rewrite the functions x(), etc., but
the user of the class wouldn’t see any change.

G. Cowan / RHUL 16 Computing and Statistical Data Analysis / Comp 4

Defining the member functions
Also in TwoVector.cc we have the following definitions:

double TwoVector::x() const { return m_x; }
double TwoVector::y() const { return m_y; }
double TwoVector::r() const {
 return sqrt(m_x*m_x + m_y*m_y);
}
double TwoVector::theta() const {
 return atan2(m_y, m_x); // from cmath
}
...

These are called “accessor” or “getter” functions.

They access the data but do not change the internal state of the
object; therefore we include const after the (empty) argument list
(more on why we want const here later).

G. Cowan / RHUL 17 Computing and Statistical Data Analysis / Comp 4

More member functions
Also in TwoVector.cc we have the following definitions:

void TwoVector::setX(double x) { m_x = x; }
void TwoVector::setY(double y) { m_y = y; }
void TwoVector::setR(double r) {
 double cosTheta = m_x / this->r();
 double sinTheta = m_y / this->r();
 m_x = r * cosTheta;
 m_y = r * sinTheta;
}

These are “setter” functions. As they belong to the class, they are
allowed to manipulate the private data members m_x and m_y.

To use with an object, use the “dot” notation:
TwoVector v(1.5, 3.7);
v.setX(2.9); // sets v’s value of m_x to 2.9

G. Cowan / RHUL 18 Computing and Statistical Data Analysis / Comp 4

Pointers to objects
Just as we can define a pointer to type int,

int* iPtr; // type "pointer to int"

we can define a pointer to an object of any class, e.g.,

TwoVector* vPtr; // type "pointer to TwoVector"

This doesn’t create an object yet! This is done with, e.g.,

vPtr = new TwoVector(1.5, 3.7);

vPtr is now a pointer to our object. With an object pointer, we
call member functions (and access data members) with -> (not
with “.”), e.g.,
double vX = vPtr->x();
cout << "vX = " << vX << endl; // prints vX = 1.5

G. Cowan / RHUL 19 Computing and Statistical Data Analysis / Comp 4

Forgotten detail: the this pointer
Inside each object’s member functions, C++ automatically provides
a pointer called this. It points to the object that called the member
function. For example, we just saw

void TwoVector::setR(double r) {
 double cosTheta = m_x / this->r();
 double sinTheta = m_y / this->r();
 m_x = r * cosTheta;
 m_y = r * sinTheta;
}

Here the use of this is optional (but nice, since it emphasizes what
belongs to whom). It can be needed if one of the function’s
parameters has the same name, say, x as a data member. By default,
x means the parameter, not the data member; this->x is then used
to access the data member.

G. Cowan / RHUL 20 Computing and Statistical Data Analysis / Comp 4

Memory allocation
We have seen two main ways to create variables or objects:

 (1) by a declaration (automatic memory allocation):
 int i;
 double myArray[10];
 TwoVector v;
 TwoVector* vPtr;

 (2) using new: (dynamic memory allocation):
 vPtr = new TwoVector(); // creates object
 TwoVector* uPtr = new TwoVector(); // on 1 line
 double* a = new double[n]; // dynamic array
 float* xPtr = new float(3.7);

The key distinction is whether or not we use the new operator.
Note that new always requires a pointer to the newed object.

G. Cowan / RHUL 21 Computing and Statistical Data Analysis / Comp 4

The stack
When a variable is created by a “usual declaration”, i.e., without
new, memory is allocated on the “stack”.

When the variable goes out of scope, its memory is automatically
deallocated (“popped off the stack”).
...
{
 int i = 3; // memory for i and obj
 MyObject obj; // allocated on the stack
 ...
} // i and obj go out of scope,
 // memory freed

G. Cowan / RHUL 22 Computing and Statistical Data Analysis / Comp 4

The heap
To allocate memory dynamically, we first create a pointer, e.g.,

 MyClass* ptr;
ptr itself is a variable on the stack. Then we create the object:

 ptr = new MyClass(constructor args);
This creates the object (pointed to by ptr) from a pool of memory
called the “heap” (or “free store”).
When the object goes out of scope, ptr is deleted from the stack,
but the memory for the object itself remains allocated in the heap:
{
 MyClass* ptr = new MyClass(); // creates object
 ...
} // ptr goes out of scope here -- memory leak!

This is called a memory leak. Eventually all of the memory
available will be used up and the program will crash.

G. Cowan / RHUL 23 Computing and Statistical Data Analysis / Comp 4

Deleting objects
To prevent the memory leak, we need to deallocate the object’s
memory before it goes out of scope:
{
 MyClass* ptr = new MyClass(); // creates an object
 MyClass* a = new MyClass[n]; // array of objects
 ...

 delete ptr; // deletes the object pointed to by ptr
 delete [] a; // brackets needed for array of objects
}

For every new, there should be a delete.
For every new with brackets [], there should be a delete [] .
This deallocates the object’s memory. (Note that the pointer to the
object still exists until it goes out of scope.)

G. Cowan / RHUL 24 Computing and Statistical Data Analysis / Comp 4

Dangling pointers
Consider what would happen if we deleted the object, but then still
tried to use the pointer:

MyClass* ptr = new MyClass(); // creates an object
...
delete ptr;
ptr->someMemberFunction(); // unpredictable!!!

After the object’s memory is deallocated, it will eventually be
overwritten with other stuff.
But the “dangling pointer” still points to this part of memory.
If we dereference the pointer, it may still give reasonable behaviour.
But not for long! The bug will be unpredictable and hard to find.
Some authors recommend setting a pointer to zero after the delete.
Then trying to dereference a null pointer will give a consistent error.

G. Cowan / RHUL 25 Computing and Statistical Data Analysis / Comp 4

Static memory allocation
For completeness we should mention static memory allocation.
Static objects are allocated once and live until the program stops.

void aFunction(){
 static bool firstCall = true;
 if (firstCall) {
 firstCall = false;
 ... // do some initialization
 }
 ...
} // firstCall out of scope, but still alive

The next time we enter the function, it remembers the previous
value of the variable firstCall. (Not a very elegant initialization
mechanism but it works.)

This is only one of several uses of the keyword static in C++.

G. Cowan / RHUL 26 Computing and Statistical Data Analysis / Comp 4

Operator overloading
Suppose we have two TwoVector objects and we want to add them.
We could write an add member function:

TwoVector TwoVector::add(TwoVector& v){
 double cx = this->m_x + v.x();
 double cy = this->m_y + v.y();
 TwoVector c(cx, cy);
 return c;
}

To use this function we would write, e.g.,
TwoVector u = a.add(b);

It would be much easier if would could simply use a+b, but to do
this we need to define the + operator to work on TwoVectors.

This is called operator overloading. It can make manipulation of
the objects more intuitive.

G. Cowan / RHUL 27 Computing and Statistical Data Analysis / Comp 4

Overloading an operator
We can overload operators either as member or non-member
functions. For member functions, we include in the class
declaration:
class TwoVector {
 public:
 ...
 TwoVector operator+ (const TwoVector&);
 TwoVector operator- (const TwoVector&);
 ...

Instead of the function name we put the keyword operator
followed by the operator being overloaded.

When we say a+b, a calls the function and b is the argument.

The argument is passed by reference (quicker) and the declaration
uses const to protect its value from being changed.

G. Cowan / RHUL 28 Computing and Statistical Data Analysis / Comp 4

Defining an overloaded operator
We define the overloaded operator along with the other member
functions, e.g., in TwoVector.cc:
TwoVector TwoVector::operator+ (const TwoVector& b) {
 double cx = this->m_x + b.x();
 double cy = this->m_y + b.y();
 TwoVector c(cx, cy);
 return c;
}

The function adds the x and y components of the object that called
the function to those of the argument.

It then returns an object with the summed x and y components.

Recall we declared x() and y(), as const. We did this so that
when we pass a TwoVector argument as const, we’re still able to
use these functions, which don’t change the object’s state.

G. Cowan / RHUL 29 Computing and Statistical Data Analysis / Comp 4

Overloaded operators: asymmetric arguments
Suppose we want to overload * to allow multiplication of a
TwoVector by a scalar value:
TwoVector TwoVector::operator* (double b) {
 double cx = this->m_x * b;
 double cy = this->m_y * b;
 TwoVector c(cx, cy);
 return c;
}

Given a TwoVector v and a double s we can say e.g. v = v*s;
But how about v = s*v; ???

No! s is not a TwoVector object and cannot call the appropriate
member function (first operand calls the function).

We didn’t have this problem with + since addition commutes.

G. Cowan / RHUL 30 Computing and Statistical Data Analysis / Comp 4

Overloading operators as non-member functions
We can get around this by overloading * with a non-member
function.

We could put the declaration in TwoVector.h (since it is related
to the class), but outside the class declaration.

We define two versions, one for each order:
TwoVector operator* (const TwoVector&, double b);
TwoVector operator* (double b, const TwoVector&);

For the definitions we have e.g. (other order similar):
TwoVector operator* (double b, const TwoVector& a) {
 double cx = a.x() * b;
 double cy = a.y() * b;
 TwoVector c(cx, cy);
 return c;
}

G. Cowan / RHUL 31 Computing and Statistical Data Analysis / Comp 4

Restrictions on operator overloading
You can only overload C++’s existing operators:

Unary: + - * & ~ ! ++ -- -> ->*
Binary: + - * / & ^ & | << >>

 += -= *= /= %= ^= &= |= <<= >>=
 < <= > >= == != && || , [] ()
 new new[] delete delete[]

Operator precedence stays same as in original.

Too bad -- cannot replace pow function with ** since this isn’t
allowed, and if we used ^ the precedence would be very low.

Recommendation is only to overload operators if this leads to more
intuitive code. Remember you can still do it all with functions.

You cannot overload: . .* ?: ::

G. Cowan / RHUL 32 Computing and Statistical Data Analysis / Comp 4

A different “static”: static members
Sometimes it is useful to have a data member or member function
associated not with individual objects but with the class as a whole.

An example is a variable that counts the number of objects of a
class that have been created.

These are called static member functions/variables (yet another use
of the word static -- better would be “class-specific”). To declare:

class TwoVector {
 public:
 ...
 static int totalTwoVecs();
 private:
 static int m_counter;
 ...
};

G. Cowan / RHUL 33 Computing and Statistical Data Analysis / Comp 4

Static members, continued
Then in TwoVector.cc (note here no keyword static):

int TwoVector::m_counter = 0; // initialize

TwoVector::TwoVector(double x, double y){
 m_x = x;
 m_y = y;
 m_counter++; // in all constructors
}

int TwoVector::totalTwoVecs() { return m_counter; }

Now we can count our TwoVectors. Note the function is called
with class-name:: and then the function name. It is connected to
the class, not to any given object of the class:
TwoVector a, b, c;
int vTot = TwoVector::totalTwoVecs();
cout << vTot << endl; // prints 3

G. Cowan / RHUL 34 Computing and Statistical Data Analysis / Comp 4

Oops #1: digression on destructors
The totalTwoVec function doesn’t work very well, since we also
create a new TwoVector object when, e.g., we use the overloaded
+. The local object itself dies when it goes out of scope, but the
counter still gets incremented when the constructor is executed.

We can remedy this with a destructor, a special member function
called automatically just before its object dies. The name is ~
followed by the class name. To declare in TwoVector.h:
public:
 ~TwoVector(); // no arguments or return type

And then we define the destructor in TwoVector.cc :
TwoVector::~TwoVector(){ m_counter--; }

Destructors are good places for clean up, e.g., deleting anything
created with new in the constructor.

G. Cowan / RHUL 35 Computing and Statistical Data Analysis / Comp 4

Oops #2: digression on copy constructors
The totalTwoVec function still doesn’t work very well, since we
should count an extra TwoVector object when, e.g., we say

 TwoVector v; // this increments m_counter
 TwoVector u = v; // oops, m_counter stays same

When we create/initialize an object with an assignment statement,
this calls the copy constructor, which by default just makes a copy.

We need to write our own copy constructor to increment
m_counter. To declare (together with the other constructors):

TwoVector(const TwoVector&); // unique signature

It gets defined in TwoVector.cc :
TwoVector(const TwoVector& v) {
 m_x = v.x(); m_y = v.y();
 m_counter++;
}

G. Cowan / RHUL 36 Computing and Statistical Data Analysis / Comp 4

Class templates
We defined the TwoVector class using double variables. But in
some applications we might want to use float.

We could cut/paste to create a TwoVector class based on floats
(very bad idea -- think about code maintenance).

Better solution is to create a class template, and from this we
create the desired classes.

template <class T> // T stands for a type
class TwoVector {
 public:
 TwoVector(T, T); // put T where before we
 T x(); // had double
 T y();
 ...
};

G. Cowan / RHUL 37 Computing and Statistical Data Analysis / Comp 4

Defining class templates
To define the class’s member functions we now have, e.g.,

template <class T>
TwoVector<T>::TwoVector(T x, T y){
 m_x = x;
 m_y = y;
 m_counter++;
}

template <class T>
T TwoVector<T>::x(){ return m_x; }

template <class T>
void TwoVector<T>::setX(T x){
 m_x = x;
}

With templates, class declaration must be in same file as
function definitions (put everything in TwoVector.h).

G. Cowan / RHUL 38 Computing and Statistical Data Analysis / Comp 4

Using class templates
To use a class template, insert the desired argument:

TwoVector<double> dVec; // creates double version

TwoVector<float> fVec; // creates float version

TwoVector is no longer a class, it’s only a template for classes.

TwoVector<double> and TwoVector<float> are classes
(sometimes called “template classes”, since they were made from
class templates).

Class templates are particularly useful for container classes, such
as vectors, stacks, linked lists, queues, etc. We will see this later
in the Standard Template Library (STL).

G. Cowan / RHUL 39 Computing and Statistical Data Analysis / Comp 4

