
Computing and Statistical Data Analysis
Comp 5: Object Oriented Programming

Glen Cowan
Physics Department
Royal Holloway, University of London
Egham, Surrey TW20 0EX

01784 443452
g.cowan@rhul.ac.uk
www.pp.rhul.ac.uk/~cowan/stat_course.html

G. Cowan / RHUL 1 Computing and Statistical Data Analysis / Comp 5

Static memory allocation
For completeness we should mention static memory allocation.
Static objects are allocated once and live until the program stops.

void aFunction(){
 static bool firstCall = true;
 if (firstCall) {
 firstCall = false;
 ... // do some initialization
 }
 ...
} // firstCall out of scope, but still alive

The next time we enter the function, it remembers the previous
value of the variable firstCall. (Not a very elegant initialization
mechanism but it works.)

This is only one of several uses of the keyword static in C++.

G. Cowan / RHUL 2 Computing and Statistical Data Analysis / Comp 5

Operator overloading
Suppose we have two TwoVector objects and we want to add them.
We could write an add member function:

TwoVector TwoVector::add(TwoVector& v){
 double cx = this->m_x + v.x();
 double cy = this->m_y + v.y();
 TwoVector c(cx, cy);
 return c;
}

To use this function we would write, e.g.,
TwoVector u = a.add(b);

It would be much easier if would could simply use a+b, but to do
this we need to define the + operator to work on TwoVectors.

This is called operator overloading. It can make manipulation of
the objects more intuitive.

G. Cowan / RHUL 3 Computing and Statistical Data Analysis / Comp 5

Overloading an operator
We can overload operators either as member or non-member
functions. For member functions, we include in the class
declaration:
class TwoVector {
 public:
 ...
 TwoVector operator+ (const TwoVector&);
 TwoVector operator- (const TwoVector&);
 ...

Instead of the function name we put the keyword operator
followed by the operator being overloaded.

When we say a+b, a calls the function and b is the argument.

The argument is passed by reference (quicker) and the declaration
uses const to protect its value from being changed.

G. Cowan / RHUL 4 Computing and Statistical Data Analysis / Comp 5

Defining an overloaded operator
We define the overloaded operator along with the other member
functions, e.g., in TwoVector.cc:
TwoVector TwoVector::operator+ (const TwoVector& b) {
 double cx = this->m_x + b.x();
 double cy = this->m_y + b.y();
 TwoVector c(cx, cy);
 return c;
}

The function adds the x and y components of the object that called
the function to those of the argument.

It then returns an object with the summed x and y components.

Recall we declared x() and y(), as const. We did this so that
when we pass a TwoVector argument as const, we’re still able to
use these functions, which don’t change the object’s state.

G. Cowan / RHUL 5 Computing and Statistical Data Analysis / Comp 5

Overloaded operators: asymmetric arguments
Suppose we want to overload * to allow multiplication of a
TwoVector by a scalar value:
TwoVector TwoVector::operator* (double b) {
 double cx = this->m_x * b;
 double cy = this->m_y * b;
 TwoVector c(cx, cy);
 return c;
}

Given a TwoVector v and a double s we can say e.g. v = v*s;
But how about v = s*v; ???

No! s is not a TwoVector object and cannot call the appropriate
member function (first operand calls the function).

We didn’t have this problem with + since addition commutes.

G. Cowan / RHUL 6 Computing and Statistical Data Analysis / Comp 5

Overloading operators as non-member functions
We can get around this by overloading * with a non-member
function.

We could put the declaration in TwoVector.h (since it is related
to the class), but outside the class declaration.

We define two versions, one for each order:
TwoVector operator* (const TwoVector&, double b);
TwoVector operator* (double b, const TwoVector&);

For the definitions we have e.g. (other order similar):
TwoVector operator* (double b, const TwoVector& a) {
 double cx = a.x() * b;
 double cy = a.y() * b;
 TwoVector c(cx, cy);
 return c;
}

G. Cowan / RHUL 7 Computing and Statistical Data Analysis / Comp 5

Restrictions on operator overloading
You can only overload C++’s existing operators:

Unary: + - * & ~ ! ++ -- -> ->*
Binary: + - * / & ^ & | << >>

 += -= *= /= %= ^= &= |= <<= >>=
 < <= > >= == != && || , [] ()
 new new[] delete delete[]

Operator precedence stays same as in original.

Too bad -- cannot replace pow function with ** since this isn’t
allowed, and if we used ^ the precedence would be very low.

Recommendation is only to overload operators if this leads to more
intuitive code. Remember you can still do it all with functions.

You cannot overload: . .* ?: ::

G. Cowan / RHUL 8 Computing and Statistical Data Analysis / Comp 5

A different “static”: static members
Sometimes it is useful to have a data member or member function
associated not with individual objects but with the class as a whole.

An example is a variable that counts the number of objects of a
class that have been created.

These are called static member functions/variables (yet another use
of the word static -- better would be “class-specific”). To declare:

class TwoVector {
 public:
 ...
 static int totalTwoVecs();
 private:
 static int m_counter;
 ...
};

G. Cowan / RHUL 9 Computing and Statistical Data Analysis / Comp 5

Static members, continued
Then in TwoVector.cc (note here no keyword static):

int TwoVector::m_counter = 0; // initialize

TwoVector::TwoVector(double x, double y){
 m_x = x;
 m_y = y;
 m_counter++; // in all constructors
}

int TwoVector::totalTwoVecs() { return m_counter; }

Now we can count our TwoVectors. Note the function is called
with class-name:: and then the function name. It is connected to
the class, not to any given object of the class:
TwoVector a, b, c;
int vTot = TwoVector::totalTwoVecs();
cout << vTot << endl; // prints 3

G. Cowan / RHUL 10 Computing and Statistical Data Analysis / Comp 5

Oops #1: digression on destructors
The totalTwoVec function doesn’t work very well, since we also
create a new TwoVector object when, e.g., we use the overloaded
+. The local object itself dies when it goes out of scope, but the
counter still gets incremented when the constructor is executed.

We can remedy this with a destructor, a special member function
called automatically just before its object dies. The name is ~
followed by the class name. To declare in TwoVector.h:
public:
 ~TwoVector(); // no arguments or return type

And then we define the destructor in TwoVector.cc :
TwoVector::~TwoVector(){ m_counter--; }

Destructors are good places for clean up, e.g., deleting anything
created with new in the constructor.

G. Cowan / RHUL 11 Computing and Statistical Data Analysis / Comp 5

Oops #2: digression on copy constructors
The totalTwoVec function still doesn’t work very well, since we
should count an extra TwoVector object when, e.g., we say

 TwoVector v; // this increments m_counter
 TwoVector u = v; // oops, m_counter stays same

When we create/initialize an object with an assignment statement,
this calls the copy constructor, which by default just makes a copy.

We need to write our own copy constructor to increment
m_counter. To declare (together with the other constructors):

TwoVector(const TwoVector&); // unique signature

It gets defined in TwoVector.cc :
TwoVector(const TwoVector& v) {
 m_x = v.x(); m_y = v.y();
 m_counter++;
}

G. Cowan / RHUL 12 Computing and Statistical Data Analysis / Comp 5

Class templates
We defined the TwoVector class using double variables. But in
some applications we might want to use float.

We could cut/paste to create a TwoVector class based on floats
(very bad idea -- think about code maintenance).

Better solution is to create a class template, and from this we
create the desired classes.

template <class T> // T stands for a type
class TwoVector {
 public:
 TwoVector(T, T); // put T where before we
 T x(); // had double
 T y();
 ...
};

G. Cowan / RHUL 13 Computing and Statistical Data Analysis / Comp 5

Defining class templates
To define the class’s member functions we now have, e.g.,

template <class T>
TwoVector<T>::TwoVector(T x, T y){
 m_x = x;
 m_y = y;
 m_counter++;
}

template <class T>
T TwoVector<T>::x(){ return m_x; }

template <class T>
void TwoVector<T>::setX(T x){
 m_x = x;
}

With templates, class declaration must be in same file as
function definitions (put everything in TwoVector.h).

G. Cowan / RHUL 14 Computing and Statistical Data Analysis / Comp 5

Using class templates
To use a class template, insert the desired argument:

TwoVector<double> dVec; // creates double version

TwoVector<float> fVec; // creates float version

TwoVector is no longer a class, it’s only a template for classes.

TwoVector<double> and TwoVector<float> are classes
(sometimes called “template classes”, since they were made from
class templates).

Class templates are particularly useful for container classes, such
as vectors, stacks, linked lists, queues, etc. We will see this later
in the Standard Template Library (STL).

G. Cowan / RHUL 15 Computing and Statistical Data Analysis / Comp 5

The Standard C++ Library
We’ve already seen parts of the standard library such as iostream
and cmath. Here are some more:
What you #include What it does
<algorithm> useful algorithms (sort, search, ...)
<complex> complex number class
<list> a linked list
<stack> a stack (push, pop, etc.)
<string> proper strings (better than C-style)
<vector> often used instead of arrays

Most of these define classes using templates, i.e., we can have a
vector of objects or of type double, int, float, etc. They form
what is called the Standard Template Library (STL).

G. Cowan / RHUL 16 Computing and Statistical Data Analysis / Lecture 7

Using vector
Here is some sample code that uses the vector class. Often a
vector is better than an array.

#include <vector>
using namespace std;
int main() {
 vector<double> v; // uses template
 double x = 3.2;
 v.push_back(x); // element 0 is 3.2
 v.push_back(17.0); // element 1 is 17.0
 vector<double> u = v; // assignment
 int len = v.size();
 for (int i=0; i<len; i++){
 cout << v[i] << endl; // like an array
 }
 v.clear(); // remove all elements
 ...

G. Cowan / RHUL 17 Computing and Statistical Data Analysis / Lecture 7

Sorting elements of a vector
Here is sample code that uses the sort function in algorithm:
#include <vector>
#include <algorithm>
using namespace std;

bool descending(double x, double y){ return (x>y); }

int main() {
...

// u, v are unsorted vectors; overwritten by sort.
// Default sort is ascending; also use user-
// defined comparison function for descending order.

 sort(u.begin(), u.end());
 sort(v.begin(), v.end(), descending);

G. Cowan / RHUL 18 Computing and Statistical Data Analysis / Lecture 7

Iterators
To loop over the elements of a vector v, we could do this:
vector<double> v = ... // define vector v
for (int i=0; i<v.size(); i++){
 cout << v[i] << endl;
}

G. Cowan / RHUL 19 Computing and Statistical Data Analysis / Lecture 7

Alternatively, we can use an iterator, which is defined by the
vector class (and all of the STL container classes):
vector<double> v = ... // define vector v
vector<double>::iterator it;
for (it = v.begin(); it != v.end(); ++it){
 cout << *it << endl;
}

vector’s begin and end functions point to the first and last elements.
++ tells the iterator to go to the next element.
* gives the object (vector element) pointed to (note no index used).

Using string
Here is some sample code that uses the string class (much better
than C-style strings):

#include <string>
using namespace std;
int main() {
 string a, b, c;
 string s = "hello";
 a = s; // assignment
 int len = s.length(); // now len = 5
 bool sEmpty = s.empty(); // now sEmpty = false
 b = s.substring(0,2); // first position is 0
 cout << b << endl; // prints hel
 c = s + " world"; // concatenation
 s.replace(2, 3, "j!"); // replace 3 characters
 // starting at 2 with j!
 cout << s << endl; // hej!
 ...

G. Cowan / RHUL 20 Computing and Statistical Data Analysis / Lecture 7

Inheritance
Often we define a class which is similar to an existing one. For
example, we could have a class

class Animal {
 public:
 double weight();
 double age();
 ...
 private:
 double m_weight;
 double m_age;
 ...
};

G. Cowan / RHUL 21 Computing and Statistical Data Analysis / Lecture 7

Related classes
Now suppose the objects in question are dogs. We want

class Dog {
 public:
 double weight();
 double age();
 bool hasFleas();
 void bark();
 private:
 double m_weight;
 double m_age;
 bool m_hasFleas;
 ...
};

Dog contains some (perhaps many) features of the Animal class but
it requires a few extra ones.

The relationship is of the form “X is a Y”: a dog is an animal.

G. Cowan / RHUL 22 Computing and Statistical Data Analysis / Lecture 7

Inheritance
Rather than redefine a separate Dog class, we can derive it from
Animal. To do this we declare in Dog.h

#include "Animal.h"
class Dog : public Animal {
 public:
 bool hasFleas();
 void bark();
 ...
 private:
 bool m_hasFleas;
 ...
};

Animal is called the “base class”, Dog is the “derived class”.

Dog inherits all of the public (and “protected”) members of Animal.
We only need to define hasFleas(), bark(), etc.

G. Cowan / RHUL 23 Computing and Statistical Data Analysis / Lecture 7

Polymorphism, virtual functions, etc.
We might redefine a member function of Animal to do or mean
something else in Dog. This is function “overriding”. (Contrast this
with function overloading.)

We could have age() return normal years for Animal, but “dog
years” for Dog. This is an example of polymorphism. The function
takes on different forms, depending on the type of object calling it.

We can also declare functions in the base class as "pure virtual" (or
"abstract"). In the declaration use the keyword virtual and set
equal to zero; we do not supply any definition for the function in
the base class:

 virtual double age() = 0;

This would mean we cannot create an Animal object. A derived
class must define the function if it is to create objects.

G. Cowan / RHUL 24 Computing and Statistical Data Analysis / Lecture 7

Compiling and linking with gmake
For our short test programs it was sufficient to put the compile and
link commands in a short file (e.g. build.sh).

For large programs with many files, however, compiling and
linking can take a long time, and we should therefore recompile
only those files that have been modified.

This can be done with the Unix program make (gnu version gmake).

Homepage www.gnu.org/software/make

Manual ~150 pages (many online mini-tutorials).

Widely used in High Energy Physics (and elsewhere).

G. Cowan / RHUL 25 Computing and Statistical Data Analysis / Lecture 7

Why we use gmake
Suppose we have hello.cc :

#include "goodbye.h"
int main() {
 cout << "Hello world" << endl;
 goodbye();
}

as well as goodbye.cc :

#include "goodbye.h"
using namespace std;
void goodbye() {
 cout << "Good-bye world" << endl;
}

and its prototype in goodbye.h .

G. Cowan / RHUL 26 Computing and Statistical Data Analysis / Lecture 7

Simple example without gmake
Usually we compile with

g++ -o hello hello.cc goodbye.cc

which is really shorthand for compiling and linking steps:

Now suppose we modify goodbye.cc. To rebuild, really we only
need to recompile this file.
But in general it’s difficult to keep track of what needs to be
recompiled, especially if we change a header file.
Using date/time information from the files plus user supplied
information, gmake recompiles only those files that need to be and
links the program.

g++ -c hello.cc
g++ -c goodbye.cc
g++ -o hello hello.o goodbye.o

G. Cowan / RHUL 27 Computing and Statistical Data Analysis / Lecture 7

Simple example with gmake
The first step is to create a “makefile”. gmake looks in the current
directory for the makefile under the names GNUmakefile,
makefile and Makefile (in that order).

The makefile can contain several types of statements, the most
important of which is a “rule”. General format of a rule:

target : dependencies
 command

The target is usually the name of a file we want to produce and the
dependencies are the other files on which the target depends.

On the next line there is a command which must always be
preceded by a tab character (spaces no good). The command tells
gmake what to do to produce the target.

G. Cowan / RHUL 28 Computing and Statistical Data Analysis / Lecture 7

Simple example with gmake, cont.
In our example we create a file named GNUmakefile with:

If we type gmake without an argument, then the first target listed is
taken as the default, i.e., to build the program, simply type

 gmake or gmake hello

We could also type e.g.
 gmake goodbye.o

if we wanted only to compile goodbye.cc.

hello : hello.o goodbye.o
 g++ -o hello hello.o goodbye.o

hello.o : hello.cc goodbye.h
 g++ -c hello.cc

goodbye.o : goodbye.cc goodbye.h
 g++ -c goodbye.cc

G. Cowan / RHUL 29 Computing and Statistical Data Analysis / Lecture 7

gmake refinements
In the makefile we can also define variables (i.e., symbols). E.g.,
rather than repeating hello.o goodbye.o we can define

When gmake encounters $(objects) it makes the substitution.

objects = hello.o goodbye.o

hello : $(objects)

 g++ -o hello $(objects)
...

We can also make gmake figure out the command. We see that
hello.o depends on a source file with suffix .cc and a header file
with suffix .h. Provided certain defaults are set up right, it will
work if we say e.g.

hello.o : hello.cc goodbye.h

G. Cowan / RHUL 30 Computing and Statistical Data Analysis / Lecture 7

gmake for experts
makefiles can become extremely complicated and cryptic.

Often they are hundreds or thousands of lines long.

Often they are themselves not written by “humans” but rather
constructed by an equally obscure shell script.

The goal here has been to give you some feel for what gmake does
and how to work with makefiles provided by others.

Often software packages are distributed with a makefile. You
might have to edit a few lines depending on the local set up
(probably explained in the comments) and then type gmake.

We will put some simple and generalizable examples on the
course web site.

G. Cowan / RHUL 31 Computing and Statistical Data Analysis / Lecture 7

Debugging your code
You should write and test your code in short incremental steps.
Then if something doesn’t work you can take a short step back
and figure out the problem.

For every class, write a short program to test its member
functions.

You can go a long way with cout. But, to really see what’s
going on when a program executes, it’s useful to have a
debugging program.

The current best choice for us is probably ddd
(DataDisplayDebugger) which is effectively free (gnu license).

ddd is actually an interface to a lower level debugging program,
which can be gdb. If you don’t have ddd installed, try xxgdb.

G. Cowan / RHUL 32 Computing and Statistical Data Analysis / Lecture 7

Using ddd

The ddd homepage is www.gnu.org/software/ddd

There are extensive online tutorials, manuals, etc.

To use ddd, you must compile your code with the -g option:

 g++ -g -o MyProg MyProg.cc

Then type

 ddd MyProg

You should see a window with your program’s source code and a
bunch of controls.

G. Cowan / RHUL 33 Computing and Statistical Data Analysis / Lecture 7

When you start ddd
From the ddd online manual:

G. Cowan / RHUL 34 Computing and Statistical Data Analysis / Lecture 7

Running the program
Click a line of the program and then on “Break” to set a break point.
Then click on “Run”. The program will stop at the break point.

G. Cowan / RHUL 35 Computing and Statistical Data Analysis / Lecture 7

Stepping through the program
To execute current line, click next.
Put cursor over a variable to see its value.
For objects, select it and click Display.

You get the idea.
Refer to the online
tutorial and manual.

G. Cowan / RHUL 36 Computing and Statistical Data Analysis / Lecture 7

Wrapping up the C++ course
Considering we’ve only been at it 5 weeks, we’ve seen a lot:

 All the main data types and control structures
 How to work with files
 Classes and objects
 Dynamic memory allocation, etc., etc., etc.

OK, we’ve glossed over many details and to really use these things
you may have to refer back to the literature.

In addition we’ve seen the main elements of a realistic linux-based
programming environment, using tools such as gmake and ddd.

Next we start probability and statistical data analysis. This will
give us many opportunities to develop and use C++ analysis tools.

G. Cowan / RHUL 37 Computing and Statistical Data Analysis / Lecture 7

