Computing and Statistical Data Analysis

London Postgraduate Lectures on Particle Physics;
University of London MSci course PH4515

Glen Cowan
Physics Department
Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

Course web page:
www.pp.rhul.ac.uk/~cowan/stat_course.html

Course structure

$1^{\text {st }}$ four to five weeks for first half (3 to $4: 30$) will be probability and statistical data analysis.
$1^{\text {st }}$ four to five weeks for $2^{\text {nd }}$ half ($4: 30$ to 6) will be a crash course in C++

MSci/MSc students - this part mandatory PhD students $-\mathrm{C}++$ part is optional depending on your programming skills (consult with your supervisor).
After C++ part finished (\sim week 5), lectures from 3:00 to 5:00 will be on statistical data analysis, using $\mathrm{C}++$ tools for exercises.

The hour from 5 to 6 will be for discussion and overflow.

Coursework, exams, etc.

For C++ part
Computer based exercises -- see course web site: http://www.pp.rhul.ac.uk/~cowan/stat_course.html

For statistical data analysis part
More exercises, many computer based
For PH4515 students
Written exam at end of year (70% of mark), no questions on C++, only statistical data analysis.

For PhD students
No material from this course in exam (\sim early 2014)

Statistical Data Analysis Outline

9 Parameter estimation, maximum likelihood
10 More maximum likelihood
11 Method of least squares
12 Interval estimation, setting limits
13 Nuisance parameters, systematic uncertainties
14
Probability, Bayes' theorem
Random variables and probability densities
Expectation values, error propagation
Catalogue of pdfs
The Monte Carlo method
Statistical tests: general concepts
Test statistics, multivariate methods
Goodness-of-fit tests

Exa pars
Examples of Bayesian approach

Some statistics books, papers, etc.

G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998 see also www.pp.rhul.ac.uk/~cowan/sda
R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences, Wiley, 1989
see also hepwww.ph.man.ac.uk/~roger/book.html
L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986
F. James., Statistical and Computational Methods in Experimental Physics, 2nd ed., World Scientific, 2006
S. Brandt, Statistical and Computational Methods in Data Analysis, Springer, New York, 1998 (with program library on CD)
C. Amsler et al. (Particle Data Group), Review of Particle Physics, Physics Letters B667 (2008) 1; see also pdg. lbl.gov sections on probability statistics, Monte Carlo

Data analysis in particle physics

Observe events of a certain type

Measure characteristics of each event (particle momenta, number of muons, energy of jets,...)
Theories (e.g. SM) predict distributions of these properties up to free parameters, e.g., $\alpha, G_{\mathrm{F}}, M_{\mathrm{Z}}, \alpha_{\mathrm{s}}, m_{\mathrm{H}}, \ldots$
Some tasks of data analysis:
Estimate (measure) the parameters;
Quantify the uncertainty of the parameter estimates;
Test the extent to which the predictions of a theory are in agreement with the data.

Dealing with uncertainty

In particle physics there are various elements of uncertainty:
theory is not deterministic quantum mechanics

random measurement errors present even without quantum effects things we could know in principle but don't e.g. from limitations of cost, time, ...

We can quantify the uncertainty using PROBABILITY

A definition of probability

Consider a set S with subsets A, B, \ldots

$$
\begin{aligned}
& \text { For all } A \subset S, P(A) \geq 0 \\
& \quad P(S)=1 \\
& \text { If } A \cap B=\emptyset, P(A \cup B)=P(A)+P(B)
\end{aligned}
$$

Kolmogorov axioms (1933)

From these axioms we can derive further properties, e.g.

$$
\begin{aligned}
& P(\bar{A})=1-P(A) \\
& P(A \cup \bar{A})=1 \\
& P(\emptyset)=0 \\
& \text { if } A \subset B \text {, then } P(A) \leq P(B) \\
& P(A \cup B)=P(A)+P(B)-P(A \cap B)
\end{aligned}
$$

Conditional probability, independence

Also define conditional probability of A given B (with $P(B) \neq 0)$:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

E.g. rolling dice: $P(n<3 \mid n$ even $)=\frac{P((n<3) \cap n \text { even })}{P(\text { even })}=\frac{1 / 6}{3 / 6}=\frac{1}{3}$

Subsets A, B independent if: $\quad P(A \cap B)=P(A) P(B)$
If A, B independent, $P(A \mid B)=\frac{P(A) P(B)}{P(B)}=P(A)$
N.B. do not confuse with disjoint subsets, i.e., $A \cap B=\emptyset$

Interpretation of probability

I. Relative frequency
A, B, \ldots are outcomes of a repeatable experiment

$$
P(A)=\lim _{n \rightarrow \infty} \frac{\text { times outcome is } A}{n}
$$

cf. quantum mechanics, particle scattering, radioactive decay...
II. Subjective probability
A, B, \ldots are hypotheses (statements that are true or false)

$$
P(A)=\text { degree of belief that } A \text { is true }
$$

- Both interpretations consistent with Kolmogorov axioms.
- In particle physics frequency interpretation often most useful, but subjective probability can provide more natural treatment of non-repeatable phenomena:
systematic uncertainties, probability that Higgs boson exists,...

Bayes' theorem

From the definition of conditional probability we have,

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \text { and } P(B \mid A)=\frac{P(B \cap A)}{P(A)}
$$

but $P(A \cap B)=P(B \cap A)$, so

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

First published (posthumously) by the Reverend Thomas Bayes (1702-1761)

An essay towards solving a problem in the
Bayes' theorem doctrine of chances, Philos. Trans. R. Soc. 53 (1763) 370; reprinted in Biometrika, 45 (1958) 293.

The law of total probability

$\rightarrow B=B \cap S=B \cap\left(\cup_{i} A_{i}\right)=\cup_{i}\left(B \cap A_{i}\right), \quad B \cap A_{i}$
$\rightarrow P(B)=P\left(\cup_{i}\left(B \cap A_{i}\right)\right)=\sum_{i} P\left(B \cap A_{i}\right)$
$\rightarrow P(B)=\sum_{i} P\left(B \mid A_{i}\right) P\left(A_{i}\right) \quad$ law of total probability
Bayes' theorem becomes $\quad P(A \mid B)=\frac{P(B \mid A) P(A)}{\sum_{i} P\left(B \mid A_{i}\right) P\left(A_{i}\right)}$

An example using Bayes' theorem

Suppose the probability (for anyone) to have AIDS is:

$$
\begin{aligned}
& P(\text { AIDS })=0.001 \\
& P(\text { no AIDS })=0.999
\end{aligned}
$$

\leftarrow prior probabilities, i.e., before any test carried out

Consider an AIDS test: result is + or -

$$
\begin{aligned}
& P(+\mid \text { AIDS })=0.98 \\
& P(-\mid \text { AIDS })=0.02 \\
& P(+\mid \text { no AIDS })=0.03 \\
& P(-\mid \text { no AIDS })=0.97
\end{aligned}
$$

\leftarrow probabilities to (in)correctly identify an infected person
\leftarrow probabilities to (in)correctly identify an uninfected person

Suppose your result is + . How worried should you be?

Bayes' theorem example (cont.)

The probability to have AIDS given $a+$ result is

$$
\begin{aligned}
P(\mathrm{AIDS} \mid+) & =\frac{P(+\mid \mathrm{AIDS}) P(\mathrm{AIDS})}{P(+\mid \mathrm{AIDS}) P(\mathrm{AIDS})+P(+\mid \text { no AIDS }) P(\text { no AIDS })} \\
& =\frac{0.98 \times 0.001}{0.98 \times 0.001+0.03 \times 0.999} \\
& =0.032 \quad \leftarrow \text { posterior probability }
\end{aligned}
$$

i.e. you're probably OK!

Your viewpoint: my degree of belief that I have AIDS is 3.2%
Your doctor's viewpoint: 3.2% of people like this will have AIDS

Frequentist Statistics - general philosophy

In frequentist statistics, probabilities are associated only with the data, i.e., outcomes of repeatable observations (shorthand: \vec{x}).

Probability = limiting frequency
Probabilities such as
$P($ Higgs boson exists $)$,
$P\left(0.117<\alpha_{\mathrm{s}}<0.121\right)$,
etc. are either 0 or 1 , but we don't know which.
The tools of frequentist statistics tell us what to expect, under the assumption of certain probabilities, about hypothetical repeated observations.

The preferred theories (models, hypotheses, ...) are those for which our observations would be considered 'usual'.

Bayesian Statistics - general philosophy

In Bayesian statistics, use subjective probability for hypotheses:
probability of the data assuming hypothesis H (the likelihood)
prior probability, i.e., before seeing the data

$$
P(H \mid \vec{x})=\frac{P(\vec{x} \mid H) \pi(H)}{\int P(\vec{x} \mid H) \pi(H) d H}
$$

posterior probability, i.e., after seeing the data
normalization involves sum over all possible hypotheses

Bayes' theorem has an "if-then" character: If your prior probabilities were $\pi(H)$, then it says how these probabilities should change in the light of the data.

No general prescription for priors (subjective!)

Random variables and probability density functions

A random variable is a numerical characteristic assigned to an element of the sample space; can be discrete or continuous.

Suppose outcome of experiment is continuous value x

$$
P(x \text { found in }[x, x+d x])=f(x) d x
$$

$\rightarrow f(x)=$ probability density function (pdf)

$$
\int_{-\infty}^{\infty} f(x) d x=1 \quad x \text { must be somewhere }
$$

Or for discrete outcome x_{i} with e.g. $i=1,2, \ldots$ we have

$$
\begin{array}{ll}
P\left(x_{i}\right)=p_{i} & \text { probability mass function } \\
\sum_{i} P\left(x_{i}\right)=1 & x \text { must take on one of its possible values }
\end{array}
$$

Cumulative distribution function

Probability to have outcome less than or equal to x is

$$
\int_{-\infty}^{x} f\left(x^{\prime}\right) d x^{\prime} \equiv F(x) \quad \text { cumulative distribution function }
$$

Alternatively define pdf with $f(x)=\frac{\partial F(x)}{\partial x}$

Histograms

pdf $=$ histogram with
infinite data sample, zero bin width, normalized to unit area.
$f(x)=\frac{N(x)}{n \Delta x}$
$n=$ number of entries
$\Delta x=$ bin width

Multivariate distributions

Outcome of experiment characterized by several values, e.g. an n-component vector, $\left(x_{1}, \ldots x_{n}\right)$

$$
P(A \cap B)=f(x, y) d x d y
$$

joint pdf

Normalization: $\int \cdots \int f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}=1$

Marginal pdf

Sometimes we want only pdf of y some (or one) of the components:

$$
\begin{aligned}
P(A) & =\sum_{i} P\left(A \cap B_{i}\right) \\
& =\sum_{i} f\left(x, y_{i}\right) d y d x \\
& \rightarrow \int f(x, y) d y d x \\
f_{x}(x) & =\int f(x, y) d y
\end{aligned}
$$

\rightarrow marginal pdf $f_{1}\left(x_{1}\right)=\int \cdots \int f\left(x_{1}, \ldots, x_{n}\right) d x_{2} \ldots d x_{n}$
x_{1}, x_{2} independent if $f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)$

Marginal pdf (2)

Marginal pdf ~ projection of joint pdf onto individual axes.

Conditional pdf

Sometimes we want to consider some components of joint pdf as constant. Recall conditional probability:

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{f(x, y) d x d y}{f_{x}(x) d x}
$$

\rightarrow conditional pdfs: $\quad h(y \mid x)=\frac{f(x, y)}{f_{x}(x)}, \quad g(x \mid y)=\frac{f(x, y)}{f_{y}(y)}$
Bayes' theorem becomes: $g(x \mid y)=\frac{h(y \mid x) f_{x}(x)}{f_{y}(y)}$.
Recall A, B independent if $\quad P(A \cap B)=P(A) P(B)$.
$\rightarrow x, y$ independent if $f(x, y)=f_{x}(x) f_{y}(y)$.

Conditional pdfs (2)

E.g. joint pdf $f(x, y)$ used to find conditional pdfs $h\left(y \mid x_{1}\right), h\left(y \mid x_{2}\right)$:

Basically treat some of the r.v.s as constant, then divide the joint pdf by the marginal pdf of those variables being held constant so that what is left has correct normalization, e.g., $\int h(y \mid x) d y=1$.

Functions of a random variable

A function of a random variable is itself a random variable.
Suppose x follows a pdf $f(x)$, consider a function $a(x)$.
What is the pdf $g(a)$?

$$
g(a) d a=\int_{d S} f(x) d x
$$

$d S=$ region of x space for which a is in $[a, a+d a]$.

For one-variable case with unique inverse this is simply

$$
\begin{aligned}
& g(a) d a=f(x) d x \\
\rightarrow \quad & g(a)=f(x(a))\left|\frac{d x}{d a}\right|
\end{aligned}
$$

Functions without unique inverse

If inverse of $a(x)$ not unique, include all $d x$ intervals in $d S$ which correspond to $d a$:

Example:

$$
\begin{aligned}
& a=x^{2}, x= \pm \sqrt{a}, d x= \pm \frac{d a}{2 \sqrt{a}} . \\
& d S=\left[\sqrt{a}, \sqrt{a}+\frac{d a}{2 \sqrt{a}}\right] \cup\left[-\sqrt{a}-\frac{d a}{2 \sqrt{a}},-\sqrt{a}\right] \\
& g(a)=\frac{f(\sqrt{a})}{2 \sqrt{a}}+\frac{f(-\sqrt{a})}{2 \sqrt{a}}
\end{aligned}
$$

Functions of more than one r.v.

Consider r.v.s $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ and a function $a(\vec{x})$.

$$
g\left(a^{\prime}\right) d a^{\prime}=\int \ldots \int_{d S} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
$$

$d S=$ region of x-space between (hyper)surfaces defined by

$$
a(\vec{x})=a^{\prime}, a(\vec{x})=a^{\prime}+d a^{\prime}
$$

Functions of more than one r.v. (2)

Example: r.v.s $x, y>0$ follow joint pdf $f(x, y)$,
consider the function $z=x y$. What is $g(z)$?

$$
\begin{aligned}
& g(z) d z=\int \ldots \int_{d S} f(x, y) d x d y \\
&=\int_{0}^{\infty} d x \int_{z / x}^{(z+d z) / x} f(x, y) d y \\
& \rightarrow g(z)=\int_{0}^{\infty} f\left(x, \frac{z}{x}\right) \frac{d x}{x} \\
&=\int_{0}^{\infty} f\left(\frac{z}{y}, y\right) \frac{d y}{y} \\
& \text { (Mellin convolution) }
\end{aligned}
$$

More on transformation of variables

Consider a random vector $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ with joint pdf $f(\vec{x})$.
Form n linearly independent functions $\vec{y}(\vec{x})=\left(y_{1}(\vec{x}), \ldots, y_{n}(\vec{x})\right)$ for which the inverse functions $x_{1}(\vec{y}), \ldots, x_{n}(\vec{y})$ exist.

Then the joint pdf of the vector of functions is $g(\vec{y})=|J| f(\vec{x})$
where J is the
Jacobian determinant:

$$
J=\left|\begin{array}{cccc}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} & \ldots & \frac{\partial x_{1}}{\partial y_{n}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}} & \ldots & \frac{\partial x_{2}}{\partial y_{n}} \\
\vdots & & & \vdots \\
& & \ldots & \frac{\partial x_{n}}{\partial y_{n}}
\end{array}\right|
$$

For e.g. $g_{1}\left(y_{1}\right)$ integrate $g(\vec{y})$ over the unwanted components.

Expectation values

Consider continuous r.v. x with pdf $f(x)$.
Define expectation (mean) value as $E[x]=\int x f(x) d x$
Notation (often): $E[x]=\mu \quad \sim$ "centre of gravity" of pdf.
For a function $y(x)$ with $\operatorname{pdf} g(y)$,

$$
E[y]=\int y g(y) d y=\int y(x) f(x) d x
$$

(equivalent)
Variance: $\quad V[x]=E\left[x^{2}\right]-\mu^{2}=E\left[(x-\mu)^{2}\right]$
Notation: $V[x]=\sigma^{2}$
Standard deviation: $\sigma=\sqrt{\sigma^{2}}$
$\sigma \sim$ width of pdf, same units as x.

Covariance and correlation

Define covariance $\operatorname{cov}[x, y]$ (also use matrix notation $V_{x y}$) as

$$
\operatorname{cov}[x, y]=E[x y]-\mu_{x} \mu_{y}=E\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right]
$$

Correlation coefficient (dimensionless) defined as

$$
\rho_{x y}=\frac{\operatorname{cov}[x, y]}{\sigma_{x} \sigma_{y}}
$$

If x, y, independent, i.e., $f(x, y)=f_{x}(x) f_{y}(y)$, then

$$
E[x y]=\iint x y f(x, y) d x d y=\mu_{x} \mu_{y}
$$

$\rightarrow \operatorname{cov}[x, y]=0 \quad x$ and y, 'uncorrelated'
N.B. converse not always true.

Correlation (cont.)

$\rho=0.75$

$$
\rho=-0.75
$$

$$
\rho=0.25
$$

Error propagation

Suppose we measure a set of values $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ and we have the covariances $V_{i j}=\operatorname{cov}\left[x_{i}, x_{j}\right]$ which quantify the measurement errors in the x_{i}.

Now consider a function $y(\vec{x})$.
What is the variance of $y(\vec{x})$?
The hard way: use joint pdf $f(\vec{x})$ to find the pdf $g(y)$, then from $g(y)$ find $V[y]=E\left[y^{2}\right]-(E[y])^{2}$.

Often not practical, $f(\vec{x})$ may not even be fully known.

Error propagation (2)

Suppose we had $\vec{\mu}=E[\vec{x}]$ in practice only estimates given by the measured \vec{x}

Expand $y(\vec{x})$ to 1 st order in a Taylor series about $\vec{\mu}$

$$
y(\vec{x}) \approx y(\vec{\mu})+\sum_{i=1}^{n}\left[\frac{\partial y}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}}\left(x_{i}-\mu_{i}\right)
$$

To find $V[y]$ we need $E\left[y^{2}\right]$ and $E[y]$.

$$
E[y(\vec{x})] \approx y(\vec{\mu}) \text { since } E\left[x_{i}-\mu_{i}\right]=0
$$

Error propagation (3)

$$
\begin{aligned}
& E\left[y^{2}(\vec{x})\right] \approx y^{2}(\vec{\mu})+2 y(\vec{\mu}) \sum_{i=1}^{n}\left[\frac{\partial y}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}} E\left[x_{i}-\mu_{i}\right] \\
& \quad+E\left[\left(\sum_{i=1}^{n}\left[\frac{\partial y}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}}\left(x_{i}-\mu_{i}\right)\right)\left(\sum_{j=1}^{n}\left[\frac{\partial y}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}}\left(x_{j}-\mu_{j}\right)\right)\right] \\
& \quad=y^{2}(\vec{\mu})+\sum_{i, j=1}^{n}\left[\frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}} V_{i j}
\end{aligned}
$$

Putting the ingredients together gives the variance of $y(\vec{x})$

$$
\sigma_{y}^{2} \approx \sum_{i, j=1}^{n}\left[\frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}} V_{i j}
$$

Error propagation (4)

If the x_{i} are uncorrelated, i.e., $V_{i j}=\sigma_{i}^{2} \delta_{i j}$, then this becomes

$$
\sigma_{y}^{2} \approx \sum_{i=1}^{n}\left[\frac{\partial y}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}}^{2} \sigma_{i}^{2}
$$

Similar for a set of m functions $\vec{y}(\vec{x})=\left(y_{1}(\vec{x}), \ldots, y_{m}(\vec{x})\right)$

$$
U_{k l}=\operatorname{cov}\left[y_{k}, y_{l}\right] \approx \sum_{i, j=1}^{n}\left[\frac{\partial y_{k}}{\partial x_{i}} \frac{\partial y_{l}}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}} V_{i j}
$$

or in matrix notation $U=A V A^{T}$, where

$$
A_{i j}=\left[\frac{\partial y_{i}}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}}
$$

Error propagation (5)

The 'error propagation' formulae tell us the covariances of a set of functions $\vec{y}(\vec{x})=\left(y_{1}(\vec{x}), \ldots, y_{m}(\vec{x})\right)$ in terms of the covariances of the original variables.

> Limitations: exact only if $\vec{y}(\vec{x})$ linear. Approximation breaks down if function nonlinear over a region comparable in size to the σ_{i}.

N.B. We have said nothing about the exact pdf of the x_{i}, e.g., it doesn't have to be Gaussian.

Error propagation - special cases

$$
\begin{aligned}
& y=x_{1}+x_{2} \rightarrow \sigma_{y}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+2 \operatorname{cov}\left[x_{1}, x_{2}\right] \\
& y=x_{1} x_{2} \quad \rightarrow \frac{\sigma_{y}^{2}}{y^{2}}=\frac{\sigma_{1}^{2}}{x_{1}^{2}}+\frac{\sigma_{2}^{2}}{x_{2}^{2}}+2 \frac{\operatorname{cov}\left[x_{1}, x_{2}\right]}{x_{1} x_{2}}
\end{aligned}
$$

That is, if the x_{i} are uncorrelated: add errors quadratically for the sum (or difference), add relative errors quadratically for product (or ratio).

But correlations can change this completely...

Error propagation - special cases (2)

Consider $y=x_{1}-x_{2}$ with

$$
\begin{gathered}
\mu_{1}=\mu_{2}=10, \quad \sigma_{1}=\sigma_{2}=1, \quad \rho=\frac{\operatorname{cov}\left[x_{1}, x_{2}\right]}{\sigma_{1} \sigma_{2}}=0 . \\
V[y]=1^{2}+1^{2}=2, \rightarrow \sigma_{y}=1.4
\end{gathered}
$$

Now suppose $\rho=1$. Then

$$
V[y]=1^{2}+1^{2}-2=0, \rightarrow \sigma_{y}=0
$$

i.e. for 100% correlation, error in difference $\rightarrow 0$.

