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Some distributions

G. Cowan

Distribution/pdf Example use in HEP
Binomial Branching ratio
Multinomial Histogram with fixed N
Poisson Number of events found
Uniform Monte Carlo method
Exponential Decay time

Gaussian Measurement error
Chi-square Goodness-of-fit

Cauchy Mass of resonance
Landau Ionization energy loss
Beta Prior pdf for efficiency
Gamma Sum of exponential variables
Student’s ¢

Resolution function with adjustable tails

Computing and Statistical Data Analysis / Stat 2



Binomial distribution

Consider N independent experiments (Bernoulli trials):

outcome of each 1s ‘success’ or ‘failure’,
probability of success on any given trial 1s p.

Define discrete r.v. n = number of successes (0 <n < N).

Probability of a specific outcome (in order), e.g. “ssfsf’ 1s

pp(1 —p)p(l —p) =p"(1 _p)N—n
N
n!(N—n)!

But order not important; there are

ways (permutations) to get n successes in N trials, total
probability for # is sum of probabilities for each permutation.
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Binomial distribution (2)

The binomial distribution is therefore

N
;N, — n 1 . N—n
f/("ﬂ p) DTN =P (1-p)
random parameters

variable

For the expectation value and variance we find:
N
E[n] = ) nf(n;N,p) = Np

n=0

VIn] = E[n?] — (E[n])? = Np(1 — p)
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Binomial distribution (3)

Binomial distribution for several values of the parameters:
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Example: observe N decays of W+, the number n of which are
W—uv is a binomial r.v., p = branching ratio.
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Multinomial distribution

Like binomial but now m outcomes instead of two, probabilities are

m
1=1

For N trials we want the probability to obtain:

n, of outcome 1,
n, of outcome 2,

n,, of outcome m.

This is the multinomial distribution for 7 = (n1,...,7m)
N
f(it; N,p) = PP - D
nilnol. - ny!
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Multinomial distribution (2)

Now consider outcome 7 as ‘success’, all others as ‘failure’.

— all n; individually binomial with parameters N, p,

E[n;] = Np;, VIn;l = Np;(1 —p;) foralli

One can also find the covariance to be
Vij = Npi(d;5 — pj)

Example: 7 = (n1,...,nm) represents a histogram

with m bins, N total entries, all entries independent.
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Poisson distribution

Consider binomial 7 in the limit

N — oo, p — 0O, FElnl = Np —v.
< 0.4
= v=2
— n follows the Poisson distribution: =02 L N N
V’I’L 0 H H ” I o
f(niv)="e (n>0) I
- - 04
S v=5
Flnl=v, Vn]l=v. To2f
0 ln [ H H H H [
0 5 10 15 20
Example: number of scattering events — _ | '
n with cross section o found for a fixed £ v=10
. . . . 0.2 r
integrated luminosity, with v = o [ L dt. a1l
0 ol 0o
0 5 10 15 20

n
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Uniform distribution

Consider a continuous r.v. x with —oo < x < oo . Uniform pdf is:

12

 a<z<f

f(x;aaﬁ):{ﬁ_a E, 1ot o B
0 otherwise | L
1 oo | e
Bla] = 2(a + 5) " |
Vial = L(8—a)? .
12 ® o ; ; ;

N.B. For any r.v. x with cumulative distribution F(x),
y = F(x) 1s uniform 1n [0,1].

Example: for n° — yy, E, is uniformin [E; , E, .. ], with

Emin = %Eﬂ(l — 5) . Emax = %Ew(l + 5)
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Exponential distribution

The exponential pdf for the continuous r.v. x 1s defined by:

1

%e_x/g x>0 = s | - 2:;
flx; &) = ios
otherwise 06
E[ZU] e 0.4 ‘\\\
02 e
2
V[x] - g 0 0 1 2 (; 4 5

Example: proper decay time ¢ of an unstable particle

f(t;7) = le_t/T (7= mean lifetime)
T

Lack of memory (unique to exponential): f(t — to|t > tg) = f(¢)
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Gaussian distribution

The Gaussian (normal) pdf for a continuous r.v. x 1s defined by:

~

]. —(CU— 2 2 é 06 F — n=0,0=1 i
T, , O ) — e :u’) /20 = --- u=0, 0=2
fip, o) = —o— s
04 r
Elz] =p  (N.B. often u, 0 denote

mean, variance of any o2
V[z] = o2 IV, notonly Gaussian.)

0 E=oo

Special case: u=0, =1 (‘standard Gaussian’):

r) = - e 7°/2 )= [ z') dz’
o) =2 e@) = [ e@)d

If y ~ Gaussian with u, o2, then x = (y — u) /o follows ¢ (x).
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Gaussian pdf and the Central Limit Theorem

The Gaussian pdf is so useful because almost any random
variable that 1s a sum of a large number of small contributions
follows 1t. This follows from the Central Limit Theorem:

For n independent r.v.s x; with finite variances o, otherwise
arbitrary pdfs, consider the sum

mn
y= >
1=1

In the limit n — oo, y 1s a Gaussian r.v. with
n

Ell=> 1w  Vil=)Y o?
1=1 )

1 =1

Measurement errors are often the sum of many contributions, so
frequently measured values can be treated as Gaussian r.v.s.
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Central Limit Theorem (2)

The CLT can be proved using characteristic functions (Fourier
transforms), see, e€.g., SDA Chapter 10.

For finite n, the theorem 1s approximately valid to the
extent that the fluctuation of the sum 1s not dominated by
one (or few) terms.

A Beware of measurement errors with non-Gaussian tails.

Good example: velocity component v, of air molecules.

OK example: total deflection due to multiple Coulomb scattering.
(Rare large angle deflections give non-Gaussian tail.)

Bad example: energy loss of charged particle traversing thin

gas layer. (Rare collisions make up large fraction of energy loss,
cf. Landau pdf.)
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Multivariate Gaussian distribution

Multivariate Gaussian pdf for the vector? = (z1,...,xn) :

1
oAV

F(& 6, V) p | -5 — DTV HE - i)

=T

— — —»T
x, [ are column vectors, £ , [~ are transpose (row) vectors,

Blz;] = pi, ,  covlz;,z;] =V .

For n = 2 this 1s
1

f(z1,22,; p1,12,01,02,p) =
2mo1004/ 1 — ,02
1 TN v — po\” T1 — (1) (T2 — M2
X exp{ — _9
p{ 2(1—02)[< o1 >+< 02 ) p( o1 >< o2 >]}

where p = cov[x,, x,]/(0,0,) 1s the correlation coefficient.
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Chi-square (%) distribution

The chi-square pdf for the continuous r.v. z (z > 0) 1s defined by

1 n/2-1 —2/2 & N _
zZ;m) = z e g =
HEm = o () |
03 X —10
n=1, 2, ..= number of ‘degrees of L
freedom’ (dof) e,
01 FA\N
FElzl =n, V][z]=2n. Ve s e

For independent Gaussian x, i = 1, ..., n, means u,, variances 07,

n T; — i2
Z( 2:“)

z = - follows yx? pdf with »n dof.
i=1 i
Example: goodness-of-fit test variable especially in conjunction

with method of least squares.
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Cauchy (Breit-Wigner) distribution

The Breit-Wigner pdf for the continuous r.v. x 1s defined by

1 r/2

f(mv r,ZUO) — ;l—2/4+ (%-330)2

08

Jlex, D)

06 r

(' =2, x, = 0 is the Cauchy pdf.)

04

E[x] not well defined, V[x] —oo.

02 |

x, = mode (most probable value)

I" = full width at half maximum

Example: mass of resonance particle, e.g. p, K*, ¢°, ...

I" = decay rate (inverse of mean lifetime)
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[Landau distribution

For a charged particle with = v /c traversing a layer of matter
of thickness d, the energy loss A follows the Landau pdf:

1 A
f(A;B) = —¢9(N) , g
€ F = a9 = R
1 50 [5 -+ + g
o(N\) = _/O exp(—ulnu — Au) sin mru du
r
—f d [
— Y Aa_e(iné4q1o
= Hoe(nS o1
_ 2wNae*2?p> 7 d ,  I?expp?
¢ = mec2S A (B2 © T 2mec232~2

L. Landau, J. Phys. USSR 8 (1944) 201; see also
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.
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Landau distribution (2)
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Beta distribution

. T(a+8)
e enB) = F ()
Blrl = a+f3
_ af
Y = et s+ D)

Often used to represent pdf
of continuous r.v. nonzero only
between finite limits.
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Gamma distribution

: _ 1 a—1 _—x/p3
(@i B) = £l
FElx] = apf 505
V[CE] — OéﬂQ “-0.4
0.3

Often used to represent pdf
of continuous r.v. nonzero only

in [0,0].

Also e.g. sum of n exponential 01 ;
r.v.s or time until n#th event |

0.2

in Poisson process ~ Gamma
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Student's ¢ distribution

()

flz,v) =

Elzx] =0 Ww>1)

V[a] =L2 (v > 2)

v =number of degrees of freedom
(not necessarily integer)

v=1 gives Cauchy,

v — oo gives Gaussian.

G. Cowan Computing and Statistical Data Analysis / Stat 2

332
Vo (v/2) (1 t

04 r

—v=1
----- v=2
......... v=100




Student's ¢ distribution (2)

If x ~ Gaussian with =0, =1, and
z ~ x> with n degrees of freedom, then
t=x/(z/n)'? follows Student's ¢ with v = n.

This arises in problems where one forms the ratio of a sample
mean to the sample standard deviation of Gaussian r.v.s.

The Student's ¢ provides a bell-shaped pdf with adjustable
tails, ranging from those of a Gaussian, which fall off very
quickly, (v — oo, but 1n fact already very Gauss-like for
v= two dozen), to the very long-tailed Cauchy (v=1).

Developed 1in 1908 by William Gosset, who worked under
the pseudonym "Student" for the Guinness Brewery.
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Wrapping up lecture Stat 2

We’ve looked at a number of important distributions:
Binomial, Multinomial, Poisson, Uniform, Exponential
Gaussian, Chi-square, Cauchy, Landau, Beta,

Gamma, Student's ¢

and we’ve seen the important Central Limit Theorem:
explains why Gaussian r.v.s come up so often

For a more complete catalogue see e.g. the handbook on
statistical distributions by Christian Walck from

http://www.physto.se/~walck/
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