Computing and Statistical Data Analysis Stat 3: The Monte Carlo Method

London Postgraduate Lectures on Particle Physics;
University of London MSci course PH4515

Glen Cowan
Physics Department
Royal Holloway, University of London
g.cowan@rhul.ac.uk
www.pp.rhul.ac.uk/~cowan

Course web page:
www.pp.rhul.ac.uk/~cowan/stat_course.html

The Monte Carlo method

What it is: a numerical technique for calculating probabilities and related quantities using sequences of random numbers.
The usual steps:
(1) Generate sequence $r_{1}, r_{2}, \ldots, r_{m}$ uniform in [0, 1].
(2) Use this to produce another sequence $x_{1}, x_{2}, \ldots, x_{n}$
 distributed according to some $\operatorname{pdf} f(x)$ in which we're interested (x can be a vector).
(3) Use the x values to estimate some property of $f(x)$, e.g., fraction of x values with $a<x<b$ gives $\int_{a}^{b} f(x) d x$.
\rightarrow MC calculation $=$ integration (at least formally)
MC generated values $=$ 'simulated data'
\rightarrow use for testing statistical procedures

Random number generators

Goal: generate uniformly distributed values in [0, 1].
Toss coin for e.g. 32 bit number... (too tiring).
\rightarrow 'random number generator'
$=$ computer algorithm to generate $r_{1}, r_{2}, \ldots, r_{n}$.
Example: multiplicative linear congruential generator (MLCG)

$$
\begin{aligned}
& n_{i+1}=\left(a n_{i}\right) \bmod m, \quad \text { where } \\
& n_{i}=\text { integer } \\
& a=\text { multiplier } \\
& m=\text { modulus } \\
& n_{0}=\text { seed (initial value) }
\end{aligned}
$$

N.B. $\bmod =$ modulus (remainder), e.g. $27 \bmod 5=2$.

This rule produces a sequence of numbers n_{0}, n_{1}, \ldots

Random number generators (2)

The sequence is (unfortunately) periodic!
Example (see Brandt Ch 4): $a=3, m=7, n_{0}=1$

$$
\begin{aligned}
& n_{1}=(3 \cdot 1) \bmod 7=3 \\
& n_{2}=(3 \cdot 3) \bmod 7=2 \\
& n_{3}=(3 \cdot 2) \bmod 7=6 \\
& n_{4}=(3 \cdot 6) \bmod 7=4 \\
& n_{5}=(3 \cdot 4) \bmod 7=5 \\
& n_{6}=(3 \cdot 5) \bmod 7=1 \quad \leftarrow \text { sequence repeats }
\end{aligned}
$$

Choose a, m to obtain long period (maximum $=m-1) ; m$ usually close to the largest integer that can represented in the computer.

Only use a subset of a single period of the sequence.

Random number generators (3)

 $r_{i}=n_{i} / m$ are in $[0,1]$ but are they 'random'?Choose a, m so that the r_{i} pass various tests of randomness: uniform distribution in $[0,1]$, all values independent (no correlations between pairs), e.g. L'Ecuyer, Commun. ACM 31 (1988) 742 suggests

$$
\begin{aligned}
& a=40692 \\
& m=2147483399
\end{aligned}
$$

Far better generators available, e.g. TRandom3, based on Mersenne twister algorithm, period $=2^{19937}-1$ (a "Mersenne prime").
See F. James, Comp. Phys. Comm. 60 (1990) 111; Brandt Ch. 4

