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The transformation method

Given ry, 7,,..., r, uniform 1n [0, 1], find x, x,,..., x,
that follow f(x) by finding a suitable transformation x (7).

lllll

Require: P(r <) = P(x < z(r"))

ie. [ gmyar=1'= [T p@)de' = Fa('))

That 1s, set F'(z) =r and solve for x (7).

Computing and Statistical Data Analysis / Stat 4



Example of the transformation method

Exponential pdf: f(x; &) = %e_x/g (x> 0)

x]1
Set /oEG x/£d$/=7“ and solve for x (7).

— x(r)=—-€In(1—7r) (x(r) = —&Inr works too.)
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The acceptance-rejection method

05

J()

04 Xt x

Enclose the pdf in a box: o

02 r

01

O 1

(1) Generate a random number x, uniform in [x ], 1.e.

min?® X max

T = Tmin + r1(Tmax — Tmin) » r, 1s uniform in [0,1].

(2) Generate a 2nd independent random number z uniformly
distributed between 0 and £, ,i.e. ©u = r2fmax -

(3) Ifu < f(x), then accept x. If not, reject x and repeat.
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Example with acceptance-rejection method
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If dot below curve, use
x value in histogram.
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Improving efficiency of the
acceptance-rejection method

The fraction of accepted points is equal to the fraction of
the box’s area under the curve.

For very peaked distributions, this may be very low and
thus the algorithm may be slow.

Improve by enclosing the pdf f(x) in a curve C A(x) that conforms
to f(x) more closely, where 4(x) 1s a pdf from which we can
generate random values and C' 1s a constant.

Generate points uniformly
over C h(x).

If point 1s below f(x),
accept x.
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Monte Carlo event generators :

u
" \

Simple example: ete” — utu” " ‘\9

Generate cosf and ¢: W

f(cosl; Apg) < (1 4+ gAFB cos + cos?0) ,

o) =5 (0<6<2m)

Less simple: ‘event generators’ for a variety of reactions:
ete- — u*tu~, hadrons, ...
pp — hadrons, D-Y, SUSY,...

e.g. PYTHIA, HERWIG, ISAJET...

Output = ‘events’, 1.e., for each event we get a list of
generated particles and their momentum vectors, types, etc.
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Event listing (summary) A Simlﬂated eVent

particle/jet KS KF orig p_x P_yY p_z E

Ip+! 21 2212 0 0,000 0,000 7000,000 7000,000 0,938
Ip+! 21 2212 0 0,000 0,000-7000,000 7000,000 0,938

[

Igl 21 21
lubar! 21 -2
21 21
21 21
21 1000021
21 1000021
21-1000024
21 -3
21 4
1¥chi_201 21 1000023
Ibl 21 5
Ibbar! 21 -5
1“chi_101 21 1000022
Isl 21 3
Ichar! 21 -4
1“chi_101 21 1000022
Ihu_mu! 21 14
Ihu_mubar! 21 -14

0,863 -0,323 1739,862 1739,862 0,000
-0,621 -0,163 -777,415 777,415 0,000
-2,427 5,486 1487,857 1487 >><..

-62,910 63,357 -463,274 471
314,363 544,843 493,897 973) 397 pi+ 0,008 0,398 -308,296 308,297
-379,700 -476,000 525,686 930) 395 gamma 0,407 0,087-1695,458 1695,458
120,058 112,247 129,860 263) 399 gamma 0,113 -0,029 -314,822 314,822
259,400 187,468 83,100 330) 400 (pi0) 0,021 0,122 103,709 103,709
-79,403 242,409 283,026 381) 401 (pi0) 0,084 -0,068 -94,276 94,276
-326,241 -80,971 113,712 385) 402 (pi0) 0,267 -0,052 -144,673 144,674
-51,841 -294,077 389,953 491) 403 ganma -1,581 2,473 3,308 4,421
-0,597 -99,577 21,299 101) 404 gamma -1,494 2,143 3,061 4,016
103,362 81,316 83,457 175) 405 pi- 0,007 0,738 4,015 4,085

5,451 38,374 52,302 65) 406 pi+ -0,024 0,293 0,486 0,585

20,839 -7,250 5,938 22) 407 K+ 4,382 -1,412 -1,799 4,368
-136,266 -72,961 53,246 181 408 pi- 1,183 -0,894 -0,176 1,500
-78,263 -24,757 21,719 84) 403 (pi0) 11 0,955 -0,453 -0,530 1,221
-107,801 16,901 38,226 115) 410 (pi0) 11 2,349 -1,105 -1,181 2,855
411 (Kbar0) 11 1,441 0,247 0,472 1,615
qanmna 1 22 2,636 1,357 0,125 2) 412 pi- 1 2,232 -0,400 -0,249 2,285
{“chi_1-) 11-1000024 129,643 112,440 129,820 262) 413 k+ 1 1,380 -0,652 -0,361 1,644
(“chi_20) 11 1000023 -322,330 -80,817 113,191 382} 414 (pi0) 11 1,078  -0,265 0,175 1,132
“chi_10 1 1000022 97,944 77,819 80,917 169) 415 (K_S0) 11 1,841 0,111 0,894 2,109
“chi_10 1 1000022 -136,266 -72,961 53,246 181) 416 K+ 0,307 0,107 0,252 0,642
nU_mu 1 14 -78,263 -24,757 21,719 84) 417 pi- 0,266 0,316 -0,201 0,480
nu_mubar 1 -14 -107,801 16,901 38,226 115) 418 nbar0 1,335 1.641 2,078 3,111
{Delta++) 11 2224 0,222 0,012-2734,287 2734} 419 (pi0) 0,899 1,046 1,311 1,908
420 pi+ 0,217 1,407 1,356 1,971
421 (pi0) 1,207 2,336 2,767 3,820
422 n0 3,475 5,324 5,702 8,592
423 pi- 1,856 2,608 2,808 4,259
424 gamma -0,012 0,247 0,421 0,489
425 gamma 0,025 0,034 0,009 0,043
426 pi+ 2,718 5,229 6,403 8,703
427 (pi0) 4,109 6,747 7.597 10,961

PYTHIA Monte Carlo 123 (pi0) 0BE L1t o2 160t

430 gamma -0,383 1,169 1,208 1,724

pp —> gluinO—gluinO I431 gamma -0,2010 0,070 0,060 0,221

000~ O B

e
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Monte Carlo detector simulation
Takes as input the particle list and momenta from generator.

Simulates detector response:
multiple Coulomb scattering (generate scattering angle),
particle decays (generate lifetime),
lonization energy loss (generate A),
electromagnetic, hadronic showers,
production of signals, electronics response, ...

Output = simulated raw data — 1nput to reconstruction software:
track finding, fitting, etc.

Predict what you should see at ‘detector level’ given a certain
hypothesis for ‘generator level’. Compare with the real data.

Estimate ‘efficiencies’ = #events found / # events generated.

Programming package: GEANT
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Hypotheses

A hypothesis H specifies the probability for the data, 1.e., the
outcome of the observation, here symbolically: x.

x could be uni-/multivariate, continuous or discrete.

E.g. write x ~ f (x|H).

x could represent e.g. observation of a single particle,
a single event, or an entire “experiment”.

Possible values of x form the sample space S (or “data space”).
Simple (or “point”) hypothesis: f(x|H) completely specified.
Composite hypothesis: H contains unspecified parameter(s).

The probability for x given H 1s also called the likelihood of
the hypothesis, written L(x|H).
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Definition of a test

Goal 1s to make some statement based on the observed data
x as to the validity of the possible hypotheses.

Consider e.g. a simple hypothesis A, and alternative H,.

A test of H,, 1s defined by specifying a critical region /¥ of the
data space such that there 1s no more than some (small) probability
a, assuming /1, 1s correct, to observe the data there, 1.e.,

PxeW|H,)<a
If x 1s observed 1n the critical region, reject H,,.
a 1s called the size or significance level of the test.

Critical region also called “rejection” region; complement is
9
acceptance region.
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Definition of a test (2)

But in general there are an infinite number of possible critical
regions that give the same significance level o.

So the choice of the critical region for a test of /4, needs to take
into account the alternative hypothesis H,.

Roughly speaking, place the critical region where there 1s a low
probability to be found if H,, 1s true, but high if H, 1s true:

"y e \'\-l—\cal yeaton W
': b/‘/—?(x\HA
X
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Rejecting a hypothesis

Note that rejecting H,, 1s not necessarily equivalent to the
statement that we believe it 1s false and /, true. In frequentist

statistics only associate probability with outcomes of repeatable
observations (the data).

In Bayesian statistics, probability of the hypothesis (degree
of belief) would be found using Bayes’ theorem:

P(H|z) = fP(IT‘ Jm(H )(H

which depends on the prior probability a(H).

What makes a frequentist test useful 1s that we can compute

the probability to accept/reject a hypothesis assuming that it
1S true, or assuming some alternative is true.

G. Cowan Computing and Statistical Data Analysis / Stat 4
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Type-1, Type-l1I errors
Rejecting the hypothesis /1, when it 1s true is a Type-I error.
The maximum probability for this is the size of the test:
PxeW|H,)<a

But we might also accept /4, when it is false, and an alternative
H, 1s true.

This 1s called a Type-II error, and occurs with probability
PxeS-W|H,)=p

One minus this 1s called the power of the test with respect to
the alternative H,:

Power =1 -
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Example setting for statistical tests:
the Large Hadron Collider

Counter-rotating proton beams
in 27 km circumference ring

pp centre-of-mass energy 14 TeV

Detectors at 4 pp collision points: K o A
ATLAS . N\ by "”)
CMS «—— general purpose : “
LHCb (b physics)
ALICE (heavy ion physics)

G. Cowan Computing and Statistical Data Analysis / Stat 4 15



The ATLAS detector

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

2100 physicists
37 countries
167 universities/labs

Toroid Magnets  Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

25 m diameter
46 m length

7000 tonnes
~108 electronic channels
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A simulated SUSY event

high p.. jets
of hadrons

missing transverse energy
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ATLAS Aatlantis

G. Cowan

Background events

Event: myFiles2_8.4.0_3026_7999%02

This event from Standard
Model ttbar production also
has high p. jets and muons,
and some missing transverse
energy.

— can easily mimic a
SUSY event.
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Statistical tests (1n a particle physics context)

Suppose the result of a measurement for an individual event
is a collection of numbers & = (x1,...,Zn)

x, = number of muons,
X, = mean p of jets,
X, = missing energy, ...

T follows some n-dimensional joint pdf, which depends on
the type of event produced, 1.e., was it

pp—tt, PP —4gg,-..
For each reaction we consider we will have a hypothesis for the

pdfot x,e.g., f(:aHO)a f(il_ﬂH]_) , etcC.

E.g. call H, the background hypothesis (the event type we
want to reject); [, 1s signal hypothesis (the type we want).

G. Cowan Computing and Statistical Data Analysis / Stat 4
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Selecting events

Suppose we have a data sample with two kinds of events,
corresponding to hypotheses H, and H, and we want to select

those of type H,.

Each event is a point in  space. What ‘decision boundary’
should we use to accept/reject events as belonging to event
types H, or H,?

Perhaps select events
with ‘cuts’:

T, <

X j <Cj
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Other ways to select events

Or maybe use some other sort of decision boundary:

linear or nonlinear

How can we do this in an ‘optimal’ way?

G. Cowan Computing and Statistical Data Analysis / Stat 4
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Test statistics

The decision boundary can be defined by an equation of the form

t(ry,....xn) = teut

where #(x,,..., x,) 1s a scalar test statistic.

We can work out the pdfs g(t|Hg), g(t|H1), ...

2

g(@®)

1
tcut

Decision boundary is now a
single ‘cut’ on ¢, which
divides the space into the
critical (rejection) region and it
acceptance region.

;,'_‘; ....::::p reject HO

15 |

05 |

This defines a test. If the data
fall 1n the critical region, we , | .
I‘e_]eCt HO 0 1 2 3 4 5
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Signal/background efficiency

Probability to reject background hypothesis for
background event (background efficiency):

o0 % 2 tcut
&y = / g(t|b)dt = « acceptb -3 rejectb
tcut 18 T
o . g(1lb) _
Probability to accept a signal event g(ts)
as signal (signal efficiency):
05 |

o

Eg = / g(tls)dt =1—p ° T &
t

‘cut
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Purity of event selection

Suppose only one background type b; overall fractions of signal
and background events are 7, and s, (prior probabilities).

Suppose we select signal events with > ¢, . What is the

cut*
‘purity’ of our selected sample?

Here purity means the probability to be signal given that
the event was accepted. Using Bayes’ theorem we find:

P(t > teut|s) s
P(t > tewt|s)ms + P(t > tewt|b)my

P(h|f > tcut) —

So the purity depends on the prior probabilities as well as on the
signal and background efficiencies.

G. Cowan Computing and Statistical Data Analysis / Stat 4
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Constructing a test statistic

How can we choose a test’s critical region 1n an ‘optimal way’?

Neyman-Pearson lemma states:

To get the highest power for a given significance level in a test of
H,, (background) versus H,, (signal) the critical region should have

P(x|Hy)
P(x|Hy) ~

inside the region, and < c outside, where c 1s a constant which
determines the power.

e e e o 2 PO
Equivalently, optimal scalar test statistic is | t(x) = P(x|Hy)
0

N.B. any monotonic function of this is leads to the same test.
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Why Neyman-Pearson doesn’ t always help

The problem 1s that we usually don’t have explicit formulae for
the pdfs P(x|H,), P(x|H,).

Instead we may have Monte Carlo models for signal and
background processes, so we can produce simulated data,
and enter each event into an n-dimensional histogram.

Use e.g. M bins for each of the n dimensions, total of M" cells.

But 7 1s potentially large, — prohibitively large number of cells
to populate with Monte Carlo data.

Compromise: make Ansatz for form of test statistic (&)
with fewer parameters; determine them (e.g. using MC) to
give best discrimination between signal and background.

G. Cowan Computing and Statistical Data Analysis / Stat 4 26



Multivariate methods

Many new (and some old) methods:

Fisher discriminant
Neural networks
Kernel density methods
Support Vector Machines
Decision trees

Boosting

Bagging

New software for HEP, e.g.,
TMVA , Hocker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039
StatPatternRecognition, I. Narsky, physics/0507143
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