Computing and Statistical Data Analysis Stat 4: MC, Intro to Statistical Tests

London Postgraduate Lectures on Particle Physics; University of London MSci course PH4515

Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

Course web page:

www.pp.rhul.ac.uk/~cowan/stat_course.html

The transformation method

Given $r_1, r_2, ..., r_n$ uniform in [0, 1], find $x_1, x_2, ..., x_n$ that follow f(x) by finding a suitable transformation x(r).

Example of the transformation method

Exponential pdf:
$$f(x;\xi) = \frac{1}{\xi}e^{-x/\xi}$$
 $(x \ge 0)$

Set
$$\int_0^x \frac{1}{\xi} e^{-x'/\xi} dx' = r$$
 and solve for $x(r)$.

$$\rightarrow x(r) = -\xi \ln(1-r) \quad (x(r) = -\xi \ln r \text{ works too.})$$

The acceptance-rejection method

Enclose the pdf in a box:

(1) Generate a random number x, uniform in $[x_{\min}, x_{\max}]$, i.e. $x = x_{\min} + r_1(x_{\max} - x_{\min})$, r_1 is uniform in [0,1].

(2) Generate a 2nd independent random number u uniformly distributed between 0 and f_{max} , i.e. $u = r_2 f_{\text{max}}$.

(3) If u < f(x), then accept x. If not, reject x and repeat.

Example with acceptance-rejection method

$$f(x) = \frac{3}{8}(1+x^2)$$

(-1 \le x \le 1)

If dot below curve, use *x* value in histogram.

Improving efficiency of the acceptance-rejection method

The fraction of accepted points is equal to the fraction of the box's area under the curve.

For very peaked distributions, this may be very low and thus the algorithm may be slow.

Improve by enclosing the pdf f(x) in a curve C h(x) that conforms to f(x) more closely, where h(x) is a pdf from which we can generate random values and C is a constant.

Generate points uniformly over C h(x).

If point is below f(x), accept x.

Monte Carlo event generators

Simple example: $e^+e^- \rightarrow \mu^+\mu^-$

Generate $\cos\theta$ and ϕ :

$$e^+$$
 $e^ e^-$

$$f(\cos\theta; A_{\text{FB}}) \propto \left(1 + \frac{8}{3}A_{\text{FB}}\cos\theta + \cos^2\theta\right),$$
$$g(\phi) = \frac{1}{2\pi} \quad (0 \le \phi \le 2\pi)$$

Less simple: 'event generators' for a variety of reactions: $e^+e^- \rightarrow \mu^+\mu^-$, hadrons, ... $pp \rightarrow$ hadrons, D-Y, SUSY,...

e.g. PYTHIA, HERWIG, ISAJET...

Output = 'events', i.e., for each event we get a list of generated particles and their momentum vectors, types, etc.

Χ~										- D ×	1	
			Ev	vent l	listing (s	summary)						F
I	particle/jet	KS	KF	orig	P_X	P_9	p_z	E		m		
1 2	!p+! !p+!	21 21	2212 2212	0 0	0.000 0.000	0,000 0,000-	7000,000 -7000,000	7000, 7000,	,000 ,000	0,938 0,938		
==== 3 4 5	================== !ubar! !g!	21 21 21 21	21 -2 21	1 2 3	0,863 -0,621 -2,427	-0,323 -0,163 5,486	1739.862 -777.415 1487.857	1739, 777, 1487	.862 .415	0.000 0.000		
6 7 8 9	9 !~9! !~9! !~chi 1-!	21 21 21 21	21 1000021 1000021 -1000024	4 0 0 7	-62,910 314,363 -379,700 130,058	63,357 544,843 -476,000 112,247	-463,274 498,897 525,686 129,860	471. 979. 980. 263.	397 398 399	pi+ gamma gamma	1 1 1	
10 11 12	!sbar! !c! !~chi_20!	21 21 21 21	-3 4 1000023	778	259,400 -79,403 -326,241 -51,941	187,468 242,409 -80,971 -294,077	83,100 283,026 113,712 299 957	330. 381. 385.	400 401 402 403	(pi0) (pi0) (pi0)	11 11 11 1	
13 14 15 16	!bbar! !~chi_10! !s!	21 21 21 21	-5 1000022 3	8 9 9	-0,597 103,352 5,451	-99,577 81,316 38,374	21,299 83,457 52,302	431. 101. 175. 65.	404 405 406	gamma pi- pi+	1 1 1	-
17 18 19 20	!cDar! !~chi_10! !nu_mu! !nu_mubar!	21 21 21 21	-4 1000022 14 -14	9 12 12 12	-136,266 -78,263 -107,801	-7,250 -72,961 -24,757 16,901	-5,938 53,246 21,719 38,226	22. 181. 84. 115.	407 408 409 410	pi- (pi0) (pi0)	1 11 11	-
==== 21 22 23	gamma (~chi_1-) (~chi_20) ~chi_20)	1 11- 11 1	22 -1000024 1000023	4 9 12	2,636 129,643 -322,330	1,357 112,440 -80,817 77 919	0,125 129,820 113,191	262. 382.	411 412 413 414 415	(Kbar0) pi- K+ (pi0) (K S0)	11 1 1 11	-
25 26 27 28	"chi_10 nu_mu nu_mubar (Deltatt)	1 1 1 1	1000022 1000022 14 -14 2224	13 18 19 20	-136,266 -78,263 -107,801	-72,961 -24,757 16,901	53.246 21.719 38.226 -2734 287	181. 181. 84. 115. 2734	416 417 418 419	K+ pi- nbar0 (pi0)	1 1 1 11	- -2
:			6667		*****	*****	2104:201	2104.	420 421 422	pi+ (pi0) n0	1 11 1	2
				•					423 424 425 426	pi- gamma gamma pi+	1 1 1	_
	PYTH	H	AN	101	nte C	Carlo)		427 428 429 430	(pi0) pi- (pi0) pamma	11 1 11 1	
	$pp \rightarrow$	g	luin	0-	gluiı	10			431 :	gamma	1	

A simulated event

•

			•				
							- D X
1	211	209	0,006	0,398	-308,296	308,297	0,140
1	22	211	0.407	0,087-	-1695.458	1695.458	0,000
1	22	211	0,113	-0,029	-314,822	314,822	0.000
11	111	212	0,021	0,122	-103,709	103,709	0,135
11	111	212	0.084	-0,068	-94,276	94,276	0,135
11	111	212	0,267	-0,052	-144,673	144,674	0,135
1	22	215	-1,581	2,473	3,306	4,421	0.000
1	22	215	-1,494	2,143	3,051	4,016	0,000
1	-211	216	0,007	0,738	4,015	4,085	0,140
1	211	216	-0,024	0,293	0,486	0,585	0,140
1	321	218	4,382	-1,412	-1,799	4,968	0,494
1	-211	218	1,183	-0,894	-0,176	1,500	0,140
11	111	218	0,955	-0,459	-0,590	1,221	0,135
11	111	218	2,349	-1,105	-1,181	2,855	0,135
11	-311	219	1,441	-0,247	-0,472	1,615	0,498
1	-211	219	2,232	-0,400	-0,249	2,285	0,140
1	321	220	1,380	-0,652	-0,361	1.644	0.494
11	111	220	1,078	-0,265	0,175	1,132	0,135
11	310	222	1,841	0,111	0,894	2,109	0,498
1	321	223	0,307	0,107	0,252	0,642	0.494
1	-211	223	0,266	0,316	-0,201	0,480	0,140
1	-2112	226	1,335	1,641	2,078	3,111	0,940
11	111	226	0,899	1,046	1,311	1,908	0,135
1	211	227	0,217	1,407	1,356	1.971	0,140
11	111	-227	1,207	2,336	2,767	3,820	0,135
1	2112	228	3,475	5,324	5,702	8,592	0,940
1	-211	228	1,856	2,606	2,808	4,259	0,140
1	22	229	-0,012	0,247	0,421	0,489	0,000
1	22	229	0.025	0.034	0,009	0,043	0,000
1	211	230	2,718	5,229	6,403	8,703	0,140
11	111	230	4,109	6.747	7,597	10,961	0,135
1	-211	251	0,551	1,255	1,945	2,572	0,140
11	111	251	0.645	1.141	0.922	1.608	0.155

1,169 0,070 1,208 0,060

-0,383 -0,201

22 252

G. Cowan

Computing and Statistical Data Analysis / Stat 4

1,724 0,221

0.000

Monte Carlo detector simulation

Takes as input the particle list and momenta from generator.

Simulates detector response:

multiple Coulomb scattering (generate scattering angle), particle decays (generate lifetime), ionization energy loss (generate Δ), electromagnetic, hadronic showers, production of signals, electronics response, ...

Output = simulated raw data \rightarrow input to reconstruction software: track finding, fitting, etc.

Predict what you should see at 'detector level' given a certain hypothesis for 'generator level'. Compare with the real data. Estimate 'efficiencies' = #events found / # events generated. Programming package: GEANT

Hypotheses

A hypothesis *H* specifies the probability for the data, i.e., the outcome of the observation, here symbolically: *x*.

x could be uni-/multivariate, continuous or discrete.

E.g. write $x \sim f(x|H)$.

x could represent e.g. observation of a single particle, a single event, or an entire "experiment".

Possible values of *x* form the sample space *S* (or "data space"). Simple (or "point") hypothesis: f(x|H) completely specified. Composite hypothesis: *H* contains unspecified parameter(s). The probability for *x* given *H* is also called the likelihood of the hypothesis, written L(x|H).

Definition of a test

Goal is to make some statement based on the observed data *x* as to the validity of the possible hypotheses.

Consider e.g. a simple hypothesis H_0 and alternative H_1 .

A test of H_0 is defined by specifying a critical region W of the data space such that there is no more than some (small) probability α , assuming H_0 is correct, to observe the data there, i.e.,

$$P(x \in W \mid H_0) \le \alpha$$

If x is observed in the critical region, reject H_0 .

 α is called the size or significance level of the test.

Critical region also called "rejection" region; complement is acceptance region.

Definition of a test (2)

But in general there are an infinite number of possible critical regions that give the same significance level α .

So the choice of the critical region for a test of H_0 needs to take into account the alternative hypothesis H_1 .

Roughly speaking, place the critical region where there is a low probability to be found if H_0 is true, but high if H_1 is true:

Rejecting a hypothesis

Note that rejecting H_0 is not necessarily equivalent to the statement that we believe it is false and H_1 true. In frequentist statistics only associate probability with outcomes of repeatable observations (the data).

In Bayesian statistics, probability of the hypothesis (degree of belief) would be found using Bayes' theorem:

$$P(H|x) = \frac{P(x|H)\pi(H)}{\int P(x|H)\pi(H) \, dH}$$

which depends on the prior probability $\pi(H)$.

What makes a frequentist test useful is that we can compute the probability to accept/reject a hypothesis assuming that it is true, or assuming some alternative is true.

Type-I, Type-II errors

Rejecting the hypothesis H_0 when it is true is a Type-I error. The maximum probability for this is the size of the test:

$$P(x \in W \mid H_0) \le \alpha$$

But we might also accept H_0 when it is false, and an alternative H_1 is true.

This is called a Type-II error, and occurs with probability

$$P(x \in \mathbf{S} - W \mid H_1) = \beta$$

One minus this is called the power of the test with respect to the alternative H_1 :

Power =
$$1 - \beta$$

Example setting for statistical tests: the Large Hadron Collider

Detectors at 4 pp collision points: ATLAS CMS general purpose LHCb (b physics) ALICE (heavy ion physics) Counter-rotating proton beams in 27 km circumference ring

pp centre-of-mass energy 14 TeV

The ATLAS detector

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

25 m diameter
46 m length
7000 tonnes
~10⁸ electronic channels

A simulated SUSY event

Background events

This event from Standard Model ttbar production also has high $p_{\rm T}$ jets and muons, and some missing transverse energy.

→ can easily mimic a SUSY event.

Statistical tests (in a particle physics context)

Suppose the result of a measurement for an individual event is a collection of numbers $\vec{x} = (x_1, \dots, x_n)$

 x_1 = number of muons,

 $x_2 = \text{mean } p_T \text{ of jets,}$

 $x_3 = missing energy, ...$

 \vec{x} follows some *n*-dimensional joint pdf, which depends on the type of event produced, i.e., was it

$$\mathsf{pp} o t\overline{t} \;, \quad \mathsf{pp} o \widetilde{g}\widetilde{g} \;, \ldots$$

For each reaction we consider we will have a hypothesis for the pdf of \vec{x} , e.g., $f(\vec{x}|H_0)$, $f(\vec{x}|H_1)$, etc.

E.g. call H_0 the background hypothesis (the event type we want to reject); H_1 is signal hypothesis (the type we want).

Selecting events

Suppose we have a data sample with two kinds of events, corresponding to hypotheses H_0 and H_1 and we want to select those of type H_1 .

Each event is a point in \vec{x} space. What 'decision boundary' should we use to accept/reject events as belonging to event types H_0 or H_1 ?

Perhaps select events with 'cuts':

 $\begin{array}{ll} x_i & < c_i \\ x_j & < c_j \end{array}$

Other ways to select events

Or maybe use some other sort of decision boundary:

linear

or nonlinear

How can we do this in an 'optimal' way?

Test statistics

The decision boundary can be defined by an equation of the form

$$t(x_1,\ldots,x_n)=t_{\rm cut}$$

where $t(x_1, ..., x_n)$ is a scalar test statistic.

We can work out the pdfs $g(t|H_0), g(t|H_1), \ldots$

Decision boundary is now a single 'cut' on *t*, which divides the space into the critical (rejection) region and acceptance region.

This defines a test. If the data fall in the critical region, we reject H_{0} .

Signal/background efficiency

Probability to reject background hypothesis for background event (background efficiency):

Purity of event selection

Suppose only one background type b; overall fractions of signal and background events are π_s and π_b (prior probabilities).

Suppose we select signal events with $t > t_{cut}$. What is the 'purity' of our selected sample?

Here purity means the probability to be signal given that the event was accepted. Using Bayes' theorem we find:

$$P(\mathbf{s}|t > t_{\text{cut}}) = \frac{P(t > t_{\text{cut}}|\mathbf{s})\pi_{\mathbf{s}}}{P(t > t_{\text{cut}}|\mathbf{s})\pi_{\mathbf{s}} + P(t > t_{\text{cut}}|\mathbf{b})\pi_{\mathbf{b}}}$$
$$= \frac{\varepsilon_{\mathbf{s}}\pi_{\mathbf{s}}}{\varepsilon_{\mathbf{s}}\pi_{\mathbf{s}} + \varepsilon_{\mathbf{b}}\pi_{\mathbf{b}}}$$

So the purity depends on the prior probabilities as well as on the signal and background efficiencies.

Constructing a test statistic

How can we choose a test's critical region in an 'optimal way'?

Neyman-Pearson lemma states:

To get the highest power for a given significance level in a test of H_0 , (background) versus H_1 , (signal) the critical region should have

$$\frac{P(\mathbf{x}|H_1)}{P(\mathbf{x}|H_0)} > c$$

inside the region, and $\leq c$ outside, where c is a constant which determines the power.

Equivalently, optimal scalar test statistic is

$$t(\mathbf{x}) = \frac{P(\mathbf{x}|H_1)}{P(\mathbf{x}|H_0)}$$

N.B. any monotonic function of this is leads to the same test.

Why Neyman-Pearson doesn't always help

The problem is that we usually don't have explicit formulae for the pdfs $P(x|H_0)$, $P(x|H_1)$.

Instead we may have Monte Carlo models for signal and background processes, so we can produce simulated data, and enter each event into an *n*-dimensional histogram.

Use e.g. *M* bins for each of the *n* dimensions, total of M^n cells.

But *n* is potentially large, \rightarrow prohibitively large number of cells to populate with Monte Carlo data.

Compromise: make Ansatz for form of test statistic $t(\vec{x})$ with fewer parameters; determine them (e.g. using MC) to give best discrimination between signal and background.

Multivariate methods

Many new (and some old) methods: Fisher discriminant Neural networks Kernel density methods Support Vector Machines Decision trees Boosting Bagging

New software for HEP, e.g., **TMVA**, Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039 **StatPatternRecognition**, I. Narsky, physics/0507143