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The transformation method 
Given r1, r2,..., rn uniform in [0, 1], find x1, x2,..., xn 
that follow  f (x) by finding a suitable transformation  x (r). 

Require: 

i.e. 

That is,       set and solve for  x (r). 
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Example of the transformation method 
Exponential pdf: 

Set and solve for  x (r). 

→ works too.) 



G. Cowan  Computing and Statistical Data Analysis / Stat 4 4 

The acceptance-rejection method 

Enclose the pdf in a box: 

(1)  Generate a random number x, uniform in [xmin, xmax], i.e. 
r1 is uniform in [0,1]. 

(2)  Generate a 2nd independent random number u uniformly 
       distributed between 0 and  fmax, i.e. 
(3)  If u <  f (x), then accept x.  If not, reject x and repeat. 
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Example with acceptance-rejection method 

If dot below curve, use  
x value in histogram. 
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Improving efficiency of the  
acceptance-rejection method 

The fraction of accepted points is equal to the fraction of 
the box’s area under the curve. 

 For very peaked distributions, this may be very low and 
 thus the algorithm may be slow. 

Improve by enclosing the pdf f(x) in a curve C h(x) that conforms  
to f(x) more closely, where h(x) is a pdf from which we can  
generate random values and C is a constant. 

Generate points uniformly  
over C h(x). 

If point is below f(x),  
accept x. 
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Monte Carlo event generators 

Simple example:  e+e- → µ+µ-	



Generate cosθ and φ: 

Less simple:  ‘event generators’ for a variety of reactions:  
  e+e- → µ+µ-, hadrons, ... 
  pp → hadrons, D-Y, SUSY,... 

e.g. PYTHIA, HERWIG, ISAJET... 

Output = ‘events’, i.e., for each event we get a list of 
generated particles and their momentum vectors, types, etc. 
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A simulated event 

PYTHIA Monte Carlo 
pp → gluino-gluino 
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Monte Carlo detector simulation 
Takes as input the particle list and momenta from generator. 

Simulates detector response: 
 multiple Coulomb scattering (generate scattering angle), 
 particle decays (generate lifetime), 
 ionization energy loss (generate Δ), 
 electromagnetic, hadronic showers, 
 production of signals, electronics response, ... 

Output = simulated raw data →  input to reconstruction software: 
 track finding, fitting, etc.  

Predict what you should see at ‘detector level’ given a certain  
hypothesis for ‘generator level’.  Compare with the real data. 

Estimate ‘efficiencies’ = #events found / # events generated. 

Programming package:  GEANT 
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Hypotheses 
A hypothesis H specifies the probability for the data, i.e., the  
outcome of the observation, here symbolically: x. 

 x could be uni-/multivariate, continuous or discrete. 

 E.g. write x ~ f (x|H). 

 x could represent e.g. observation of a single particle,  
 a single event, or an entire “experiment”. 

Possible values of x form the sample space S (or “data space”). 

Simple (or “point”) hypothesis:  f (x|H) completely specified. 

Composite hypothesis:  H contains unspecified parameter(s). 

The probability for x given H is also called the likelihood of 
the hypothesis, written L(x|H). 
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Definition of a test 
Goal is to make some statement based on the observed data 
x as to the validity of the possible hypotheses. 

Consider e.g. a simple hypothesis H0 and alternative H1. 

A test of H0  is defined by specifying a critical region W of the 
data space such that there is no more than some (small) probability 
α, assuming H0 is correct,  to observe the data there, i.e., 

  P(x ∈ W | H0 ) ≤ α 

If x is observed in the critical region, reject H0. 

α is called the size or significance level of the test. 

Critical region also called “rejection” region; complement is 
acceptance region. 
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Definition of a test (2) 
But in general there are an infinite number of possible critical 
regions that give the same significance level α. 

So the choice of the critical region for a test of H0  needs to take 
into account the alternative hypothesis H1. 

Roughly speaking, place the critical region where there is a low  
probability to be found if H0 is true, but high if H1 is true: 
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Rejecting a hypothesis 
Note that rejecting H0 is not necessarily equivalent to the 
statement that we believe it is false and H1 true.  In frequentist 
statistics only associate probability with outcomes of repeatable 
observations (the data). 

In Bayesian statistics, probability of the hypothesis (degree 
of belief) would be found using Bayes’ theorem: 

which depends on the prior probability π(H).  

What makes a frequentist test useful is that we can compute 
the probability to accept/reject a hypothesis assuming that it 
is true, or assuming some alternative is true. 
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Type-I, Type-II errors  
Rejecting the hypothesis H0 when it is true is a Type-I error.   

The maximum probability for this is the size of  the test: 

 P(x ∈ W | H0 ) ≤ α	



But we might also accept H0 when it is false, and an alternative  
H1 is true. 

This is called a Type-II error, and occurs with probability 

 P(x ∈ S - W | H1 ) = β 

One minus this is called the power of the test with respect to 
the alternative H1: 

 Power = 1 - β 
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Example setting for statistical tests:   
the Large Hadron Collider 

Counter-rotating proton beams 
in 27 km circumference ring 

pp centre-of-mass energy 14 TeV 

Detectors at 4 pp collision points: 
 ATLAS 
 CMS 
 LHCb     (b physics) 
 ALICE   (heavy ion physics) 

general purpose 
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The ATLAS detector 

2100 physicists 
37 countries  
167 universities/labs 

25 m diameter 
46 m length 
7000 tonnes 
~108 electronic channels 
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A simulated SUSY event 

high pT 
muons 

high pT jets  
of hadrons 

missing transverse energy 

p p 

G. Cowan  
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Background events 

This event from Standard  
Model ttbar production also 
has high  pT jets and muons, 
and some missing transverse 
energy. 

→ can easily mimic a  
     SUSY event. 

G. Cowan  
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For each reaction we consider we will have a hypothesis for the 
pdf of     , e.g.,  

Statistical tests (in a particle physics context) 
Suppose the result of a measurement for an individual event  
is a collection of numbers 

 x1 = number of muons, 

 x2 = mean pT of jets, 

 x3 = missing energy, ... 

     follows some n-dimensional joint pdf, which depends on  
the type of event produced, i.e., was it  

etc. 
E.g. call H0 the background hypothesis (the event type we  
want to reject); H1 is signal hypothesis (the type we want). 

G. Cowan  



Computing and Statistical Data Analysis / Stat 4 20 

Selecting events 
Suppose we have a data sample with two kinds of events, 
corresponding to hypotheses H0 and H1 and we want to select 
those of type H1. 

Each event is a point in     space.  What ‘decision boundary’ 
should we use to accept/reject events as belonging to event 
types H0 or H1? 

accept 
H1 

H0 

Perhaps select events 
with ‘cuts’: 

G. Cowan  
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Other ways to select events 
Or maybe use some other sort of decision boundary: 

accept 
H1 

H0 

accept 
H1 

H0 

linear or nonlinear 

How can we do this in an ‘optimal’ way? 

G. Cowan  
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Test statistics 
The decision boundary can be defined by an equation of the form 

We can work out the pdfs 

Decision boundary is now a 
single ‘cut’ on t, which 
divides the space into the 
critical (rejection) region and 
acceptance region.   

This defines a test. If the data 
fall in the critical region, we 
reject H0. 

where t(x1,…, xn) is a scalar test statistic. 

G. Cowan  
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Signal/background efficiency 
Probability to reject background hypothesis for  
background event (background efficiency): 

Probability to accept a signal event 
as signal (signal efficiency): 

G. Cowan  

g(t|s) g(t|b) 

accept b reject b 
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Purity of event selection 
Suppose only one background type b; overall fractions of signal 
and background events are πs and πb (prior probabilities). 

Suppose we select signal events with t > tcut.  What is the 
‘purity’ of our selected sample? 

Here purity means the probability to be signal given that 
the event was accepted.  Using Bayes’ theorem we find: 

So the purity depends on the prior probabilities as well as on the 
signal and background efficiencies. 

G. Cowan  
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Constructing a test statistic 
How can we choose a test’s critical region in an ‘optimal way’? 

 Neyman-Pearson lemma states: 

To get the highest power for a given significance level in a test of 
H0, (background) versus H1, (signal) the critical region should have 

inside the region, and  ≤ c outside, where c is a constant which  
determines  the power. 

Equivalently, optimal scalar test statistic is 

N.B. any monotonic function of this is leads to the same test. 
G. Cowan  
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Why Neyman-Pearson doesn’t always help 
The problem is that we usually don’t have explicit formulae for 
the pdfs P(x|H0), P(x|H1). 

Instead we may have Monte Carlo models for signal and  
background processes, so we can produce simulated data, 
and enter each event into an n-dimensional histogram. 
Use e.g. M bins for each of the n dimensions, total of Mn cells. 

But n is potentially large, →  prohibitively large number of cells  
to populate with Monte Carlo data. 

Compromise:  make Ansatz for form of test statistic 
with fewer parameters; determine them (e.g. using MC) to  
give best discrimination between signal and background. 
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Multivariate methods 
Many new (and some old) methods: 

 Fisher discriminant 
 Neural networks 
 Kernel density methods 
 Support Vector Machines 
 Decision trees 
  Boosting 
  Bagging   

 
New software for HEP, e.g., 
TMVA , Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039 
StatPatternRecognition, I. Narsky, physics/0507143  


