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Finding an optimal decision boundary

In particle physics usually start
by making simple “cuts”:

xl.<cl.
x. <cC.
J J
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Multivariate methods

Many new (and some old) methods:

Fisher discriminant
Neural networks
Kernel density methods
Support Vector Machines
Decision trees

Boosting

Bagging

New software for HEP, e.g.,
TMVA , Hocker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039
StatPatternRecognition, I. Narsky, physics/0507143
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Resources on multivariate methods
Books:

C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning, Springer, 2001

R. Duda, P. Hart, D. Stork, Pattern Classification, 2" ed., Wiley, 2001
A. Webb, Statistical Pattern Recognition, 2" ed., Wiley, 2002

Materials from some recent meetings:

PHYSTAT conference series (2002, 2003, 2005, 2007....) see
www.phystat.org

Caltech workshop on multivariate analysis, 11 February, 2008
indico.cern.ch/conferenceDisplay.py?confId=27385

SLAC Lectures on Machine Learning by Ilya Narsky (2006)
www-group.slac.stanford.edu/sluo/Lectures/Stat2006 Lectures.html
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Software

TMVA, Hocker, Stelzer, Tegenteldt, Voss, Voss, physics/0703039

From tmva.sourceforge.net, also distributed with ROOT
Variety of classifiers
Good manual

StatPatternRecognition, [. Narsky, physics/0507143

Further info from www.hep.caltech.edu/~narsky/spr.html
Also wide variety of methods, many complementary to TMVA
Currently appears project no longer to be supported
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[Linear test statistic

.

n —
. T
Ansatz:  y(X)=D w,x,=w'*
=1

Choose the parameters w,, ..., w, so that the pdfs f(y[s), f(»|b)

have maximum ‘separation’. We want:

.

f(‘)’) ¥ [
large distance between '
mean values, small widths

(T _Tb)2

3437
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Coefficients for maximum separation

" v 1
> e mean, covariance of x

We have (up) =) x; p(3|H,)dx _

o

(Vk)ij: (x—lli\—)z-(x_IJI\—)J-])(3‘:”'[1\—)d36

L2

where k=0,1 (hypothesis)
and i,j=1,..,n (component of x)

For the mean and variance of y(X) we find
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Determining the coefficients w

The numerator of J(w) 1s

and the denominator 1s / ‘within’ classes

n —
2 2 N
Si43i= ) w,w (Vo+V,),=w Wi
i, j=1
—oT . .
. ~\_ w Bw _ separation between classes
- maximize J(w)=—= = : —
T —
wl W separation within classes
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Fisher discriminant function
oJ
ow.

1

Setting =0 gives Fisher’s linear discriminant function:

y(}):wT} WlthV_{/OCW—l(ﬁo—ﬁl)

Gives linear decision boundary.

Projection of points in direction of decision

boundary gives maximum separation. H il
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Fisher discriminant for Gaussian data

Suppose f(x|H ) is a multivariate Gaussian with mean values
E,|%|=[,for H, E,|X|=p,for H,

and covariance matrices V0 = Vl = V for both. We can write the

Fisher's discriminant function (with an offset) 1s

— — —1—>
-

y(;c)zwo_i'(uO_IH) Voox

The likelihood ratio 1s thus

o =exXp|l o (X—f,) V - (x—pa)h VO (3F—4)
p(lel) p[ 2 ’ : : ]
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Fisher for Gaussian data (2)

That 1s, y(x) 1s a monotonic function of the likelihood ratio, so for

this case the Fisher discriminant is equivalent to using the likelihood
ratio, and is therefore optimal.

For non-Gaussian data this no longer holds, but linear
discriminant function may be simplest practical solution.

Often try to transform data so as to better approximate
Gaussian before constructing Fisher discrimimant.
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Fisher and Gaussian data (3)

Multivariate Gaussian data with equal covariance matrices also
gives a simple expression for posterior probabilities, e.g.,

P(BHHO)P(HO)
p(}lHo)P(Ho)+P(;C|H1)P(H1)

P(H0|3c’)=

For Gaussian x and a particular choice of the offset w, this becomes:

1 1
PUH )= 1+e-.v(x-)ES(J’(x)) SOD g |
06 F
which i1s the logistic sigmoid function: 04 I
02 -
(We will use this later in connection

0 1 1 1 1
with Neural Networks.) 4 2 0o 2 4
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Transformation of inputs

If the data are not Gaussian with equal covariance, a linear decision
boundary 1s not optimal. But we can try to subject the data to a

transformation . R
(Pl(x)) AAF (P,,,(X)

and then treat the ¢ as the new input variables. This 1s often called

“feature space” and the ¢ are “basis functions™. The basis

functions can be fixed or can contain adjustable parameters which
we optimize with training data (cf. neural networks).

In other cases we will see that the basis functions only enter as
dot products

— —

(p(‘i:i)'(p(fj):K(‘i:i) -7::])

and thus we will only need the “kernel function™ K(x’_, xj)
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[ _inear decision boundaries

A linear decision boundary 1s only
optimal when both classes follow
multivariate Gaussians with equal
covariances and different means.

For some other cases a linear
boundary is almost useless.
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Nonlinear transformation of inputs

We can try to find a transformation, Xi,---, X, =@ (X),....9,(X)
so that the transformed “feature space” variables can be separated

better by a linear boundary:

» Here, guess fixed
¢ =tan  (x,/x;) basis functions

s (no free parameters)
P,=\Vx; X,
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Neural networks

Neural networks originate from attempts to model neural processes
(McCulloch and Pitts, 1943; Rosenblatt, 1962).

Widely used in many fields, and for many years the only “advanced”
multivariate method popular in HEP.

We can view a neural network as a specific way of parametrizing
the basis functions used to define the feature space transformation.

The training data are then used to adjust the parameters so that the
resulting discriminant function has the best performance.
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The single layer perceptron

n
Define the discriminant using y(X)=h Wo"’z W, X,
i=1

where £ 1s a nonlinear, monotonic activation function; we can use
. . . o —-X ._.1
e.g. the logistic sigmoid A(x)=(1+e ) .

X
If the activation function is monotonic, |
the resulting y(x) is equivalent to the
original linear discriminant. This is an O y(x)
example of a “generalized linear model”
called the single layer perceptron. T
X

» output node

input layer
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The multilayer perceptron

Now use this idea to define not only the output y(x), but also the set of
transformed inputs ¢, (x),...,®,, (X) that form a “hidden layer’:

Superscript for weights indicates
layer number

\

n
P (F)=h|wy+ 2, w)'x,
j=1

! hidden  output

inputs
layer ¢
This 1s the multilayer perceptron, our basic neural network model;

straightforward to generalize to multiple hidden layers.
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Network architecture: one hidden layer

Theorem: An MLP with a single hidden layer having a sufficiently

large number of nodes can approximate arbitrarily well the
optimal decision boundary.

Holds for any continuous non-polynomial activation function
Leshno, Lin, Pinkus and Schocken (1993), Neural Networks 6, 861—867

In practice often choose a single hidden layer and try increasing the
the number of nodes until no further improvement in performance
1s found.
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More than one hidden layer

“Relatively little 1s known concerning the advantages and disadvantages
of using a single hidden layer with many units (neurons) over many
hidden layers with fewer units. The mathematics and approximation
theory of the MLP model with more than one hidden layer is not well
understood.”

“Nonetheless there seems to be reason to conjecture that the two hidden
layer model may be significantly more promising than the single hidden
layer model, ...”

A. Pinkus, Approximation theory of the MLP model in neural networks,
Acta Numerica (1999), pp. 143—195.
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Network training

The type of each training event is known, i.e., for event a we have:

xa:(xl 3eers x,,) the input variables, and

t,=0,1 a numerical label for event type (“target value™)

Let w denote the set of all of the weights of the network. We can
determine their optimal values by minimizing a sum-of-squares
“error function”

Contribution to error function
from each event
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Numerical minimization of E(w)

Consider gradient descent method: from an initial guess in weight
space w'" take a small step in the direction of maximum decrease.
[.e. for the step T to T+1,

W= OV £ (37

learning rate (1>0)

If we do this with the full error function E(w), gradient descent does
surprisingly poorly; better to use “conjugate gradients”.

But gradient descent turns out to be useful with an online (sequential)
method, 1.e., where we update w for each training event a, (cycle through
all training events): .

w(T+ ) w(f)_ n V Ea(w(f))
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Error backpropagation

Error backpropagation (“backprop™) is an algorithm for finding the
derivatives required for gradient descent minimization.

The network output can be written y(x) = h(u(x)) where

(1) ..
Z Wik Xk
k=0

where we defined ¢, = x, = | and wrote the sums over the nodes

u(?c):Z w(lz}(pj(}), @ (x)=h
=0

in the preceding layers starting from 0 to include the offsets.

0E,

So e.g. for event a we have S=(v,—t,)h (u(X))p,(3)

2)
0wy b
derivative of
Chain rule gives all the needed derivatives. activation function
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[f decision boundary 1s too flexible 1t will conform too closely

Overtraining

to the training points — overtraining.

Monitor by applying classifier to independent validation sample.

training sample

independent validation sample

> 4
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Monitoring overtraining

If we monitor the value of the error function E(w) at every cycle of
the minimization, for the training sample it will continue to decrease.

error But the validation sample it may
initially decrease, and then at
some point increase, indicating
overtraining.

validation sample

training sample

training cycle
Choose classifier that minimizes error function for validation sample.
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Neural network example from LEP II

Signal: ete” - W*W~ (often 4 well separated hadron jets)
Background: e*e” — qqgg (4 less well separated hadron jets)

s | < 1nput variables based on jet
h oas | oos | 1~ structure, event shape, ...
T e 0 ke ° wawes  nONE by itself gives much separation.
e % “ }&% Neural network output:
I:;(Nm?; ‘ ng\eficit; ’ glf:r\ority1 2:; :
o.o:E~ " o.o:;— Ty o.o::— Th :f L J
?.og(Ap?inori(yf Q Qs'lhrus t1 [ oiain(E,.)i s 01 02 03 04 05 06 07 N%Eron%’utpu:

(Garrido, Juste and Martinez, ALEPH 96-144)
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Probability Density Estimation (PDE)

Construct non-parametric estimators for the pdfs of the data x for the
two event classes, p(xIH ), p(xIH ) and use these to construct the

likelihood ratio, which we use for the discriminant function:

n-dimensional histogram is a brute force example of this; we will
see a number of ways that are much better.
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Correlation vs. independence

In a general a multivariate distribution p(x) does not factorize into a
product of the marginal distributions for the individual variables:

n holds only if the

2\ — 3 (4 e
P(l)—n pi(x;) components of x
are independent

Most importantly, the components of x will generally have nonzero
covariances (1.e. they are correlated):

V,.]:cov[x,., xj]:E[x,.xj]—E[x,.]E[xj]io
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Decorrelation of input variables

But we can define a set of uncorrelated input variables by a
linear transformation, i.e., find the matrix A such that for Y= 4 X
the covariances covly, yi] =0:

fLnl 6 T T T T

-

s“"’

0 0 -
g | 2 L i’
4 f @ tr 8
6 1 1 1 1 6 1 1 1 1
6 4 2 0 2 4 6 5 4 2 0 2 4 6
X M

For the following suppose that the variables are “decorrelated” in
this way for each of p(xIHO) and p(xIHl) separately (since in general

their correlations are different).
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Decorrelation 1s not enough

But even with zero correlation, a multivariate pdf p(x) will in general
have nonlinearities and thus the decorrelated variables are still not
independent.

. pdf with zero covariance but
,

—

j components still not
¢ L independent, since clearly
F L p(xy, x,)

L p(xy]x))
: 2 py(x))

¢pz(xz)

and therefore

X1 plxx,)# p(x)) palx,)
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Naive Bayes

But if the nonlinearities are not too great, it is reasonable to first
decorrelate the inputs and take as our estimator for each pdf

=4

b >=H 5, ()

So this at least reduces the problem to one of finding estimates of
one-dimensional pdfs.

The resulting estimated likelihood ratio gives the Naive Bayes classifier
(in HEP sometimes called the “likelithood method™).
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Kernel-based PDE (KDE, Parzen window)

Consider d dimensions, N training events, x,, ..., Xy,
estimate f (x) with

A S
F@ = g 2 1 (557

\ ™~ bandwidth
kernel (smoothing parameter)

1 "
Use e.g. Gaussian kernel: K(x) = (27T)d/26_|x|2/2

Need to sum N terms to evaluate function (slow);
faster algorithms only count events in vicinity of x
(k-nearest neighbor, range search).
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Test example with TMVA

[ TMVAInput Variable: x |

Normalised

G. Cowan
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[ TMVATInput Varizble: y | [ TMVAInput Variable:z |

1 Illllllllllllllllll]llL
BT
Backgrou\d
0.8l

Normalised
Normalsed
(=]

ORI W (RSN TN TN SN VN TN SN SN TN NS (N SN . |

UIO-flow (S,B): (0.0, 0.0% ( (0.0, 0.2)%

WO-flow (5,8): (0.0, 0.0]% [ 10.0, D.2)%

0.10.20.3 0.4 0.50.6 0.7 0.8 0.9
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Test example, x vs. y with cuts on z

no cutenz =0.75
-~ d » 4
3 3
2 2F
1F
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] of-
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2~ 2
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Test example results

o
LSS
‘5‘5\%
\&‘5
S
. «© .
Fisher ‘00(06 Multilayer
discriminant 006‘15 perceptron
O
pe
O
A
Naive Bayes, [ 5 Naive Bayes with
no decorrelation | / decorrelation
i MM
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